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ABSTRACT

J5 709
The burning of liquid droplets in a high

performance combustor is essentially an unsteady process.
However, recognition is given to the fact that unsteady
analysis has rarely been given to the problem of rapid
burning and vaporization.

Through unsteady analysis conditions are
established whereby it is possible to consider that
droplets do vaporize and burn in a nearly steady state
during most of their lifetime. Periodic solutions are
then obtained when the droplet is burning in an unsteady
acoustic field of the ambient gas.

It is shown from the periodic solutions that
extremely strong response of the vaporization rate and
burning rate can occur throughout the frequency sﬁectrum.
Application to the problem of combustion instability is

indicated.
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NOMENCLATURE

nose radius of liquid body

(\/Bow) = 2 or, when subscripted, constant
of integration in high frequency analyses

Spalding transfer number, c: (Tf*— T *)/Al“
e T /oY

pre-exponential frequency factor in chemical
kinetics

specific heat at constant pressure

specific heat at constant volume .

specific heat of liquid

1 -(r/rg)

binary diffusion coefficient

activation energy of reaction kinetics
boundary layer stream function variable

low frequency expansion functions of P

enthalpy or low frequency expansion coefficients
of U '

high frequency expansion functions for P, 0', y"
high freguency expansion functions for H‘S,VMR'U’WK
complex variable, V=1

stoichiometric mass ratio, oxidizer to fuel

index for axisymmetric or two-dimensional flow

low frequency expansion coefficients of K

ratio of two characteristic times or N'/R¥*

latent heat of vaporization
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Lewis number

linear operator or perturbation in V/Le
mass flow rate per unit area

total mass flow rate /4w

Mach number or space dependent nart of m
perturbation

intrinsic coordinate normal to body unless
otherwise noted

. the order of [ 7

pressure

snpace dependent nart of &/ operturbation
Prandtl number

stoichiometric heat »f reaction

heat release »~er unit mass of fluid due to
chemical reaction

P component of heat flux vector
radial variable

gas constant for spacie X
perturbation amnlitude of
Reynolds number

intrinsic coordinate runnine aloneg body from
the stagnation point

Schmidt number J
time

temperature

velocity in § direction

velocity in inviscid stream
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velocity in n direction
flat plate v-velocity variable

stagnation point v-velocity variable

[-tb component of mass weighted average
gas velocity
th

i component of absolute velocity of specie

K,
. th

K
molecular weight
ith space variable

variable along axis of liquid body

‘boundary layer variable in n direction

mass fraction of Kth specie
space dependent part of \&bperturbation

stagnation point boundary layer variable

high frequency variable

high frequency boundary layer variables
ratio of specific heats, CP*/CV*

small perturbation parameter

stégnation point boundary layer variable
boundary layer variable

angle between 1? . and body axis

body curvature or perturbation in thermal
conductivity

thermal conductivity

"viscosity and second visocity coefficients

i component of diffusion velocity of specie
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boundary layer variable

low frequency boundary layer variable
or space dependent part of $ perturbation

density

space dependent part of T perturbation
liquid temperature or time

shear stress tensor

space dependent part of P perturbation
dissipation function

stream function

frequency

temperature exponent in transport property
laws (subscripted by appropriate transport
property)

rate of mass generation of specie K per unit
mass of fluid

vectorial quantity

total differentiation with respect to
independent variable

dimensional quantity

steady state solution

steady state quantity unless otherwise noted
perturbation quantity, time and space dependent

ith term of expansion in powers of a parameter

or variable.



Subscripts

c outer boundary where conditions are specified
CH chemi¢al

d droplet

dif diffusion

§ flame

F fuel

¢ gas

HUW heat-up

{ "inner"
TC initial conditions

[\ specie K

L liquid

L/% ratio of quantities, liquid to gas
o oxidizer
° initial conditions or "outer"

f‘ori real or imaginary quantities

r reference quantities

W wall or liquid surface

we " wet bulb

& fuel side of flame, at wall

o fuel side of flame, at flame

0; oxidizer side of flame, at flame

bl am%ient conditions or at infinity of boﬁndary

layer flow
(o) i term in expansion of powers of &M

Other quantities, superscripts, or subscripts are defined
at their origin in the text and appendices.
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INTRODUCTION

Many important combustion and propulsion systems
involve the injection of a liquid fuel and/or oxidizer
into the combustion chamber. Subsequent to the injection
process atomization, vaporization, ignition, and burning
of the substance occurs. In view of the high temperatures
usually found in combustion chambers this conversion process
from liquid to burned gas takes place extremely répidly,
and from the frame of reference of a liquid droplet this
conversion process is éssentially unsteady. The droplet,
injected under high pressure and low temperature, will
heat up in time. 1In view of the vaporization of the liquid,
the liquid-gas interface must contract in time. The
conditions of the ambient gas immediately after droplet
fdrmation do not correspond to the distributions of
temperature, velocity, ete. which exist ‘around the droplet
after sufficient time has elapsed for the initial distribution
to "relax". Secondary atomization may occur if the gas
flow field in which the droplet exists creates dynamic
forces strong enough to o?ercome the cohesive surface tension
forces. Combustors are usually quite turbulent and the
droplet is therefore burning in a randomly fluctuating field.

'The ambient donditions in the gas vary as the droplet moves



through the combustor. Finally, burning may take place
in the presence of organized acoustic oscillations of
the chamber gas, and oscillatory combustion has long been
a mystery in reference to unstable combustion systems..

It has been the practice, however, to always
treat the droplet burning process as essentially quasi-
steady. That is, at any instant of time the burning
rate and heat-up rate are calculated from equations based
on the instantaneous average conditions in the surroundings
which are assumed stationary in time. The liquid-gas
interface is assumed stationary. From the theoretical
standpoint this always amounts to neglect of time rates
of storage of mass, energy, and momentum in the diffusion
field surrounding a droplet. The reason that this
assumption is made is that the time dependent problem
is essentially non-linear and extremely difficult.
Solutions to problems which even separate the above types
of unsteadiness have never been obtained for high
temperature, rapid burning or vaporization,

A great deal of work, both theoretical and
experimental, has been performed through the quasi-steady
approach; excellent reviews have been published (1, 2)1.

No attempt will be made to give such a review here.

1., Numbers in parentheses refer to References on page 154.



However, some essentials of these theories will be
derived as a natural course toward the unsteady problem.

The purposes here are to first investigate
errors introduced in some of the quasi-steady assumptions
when an isolated droplet is burning in a non-oscillatory
ambient gas. The second is to gain some insight into
oscillatory combustion by obtaining a periodic solution
to the burning problem when a periodic sound wave is
propagating through the ambient gas. Much more attention
‘will be paid to the second purpose than the first. It
will be seen that there is great difficulty in obtaining
a mathematically well-posed problem in the unsteady
state unless a rather complex theory is built for the
steady state. These difficulties always arise when some
of the essential physics of the problem are removed for
treatment of the steady state problem and then extended
to the unsteady state.

The overall questions which are examined are
1l.) under what conditions in a non-oscillatory field will
a droplet burn during most of it's lifetime in essentially
a quasi-steady fashion? and 2.) given the first set of
conditions is it possible that the periodic burning and/or
vaporization rate under acoustic periodic oscillations
of the ambient gas will tend to amplify or damp the

.acoustic oscillations?



CHAPTER I

FUNDAMENTALS AND THE STAGNANT-FILM QUASI-STEADY THEORY

A. Basic Equations
In order that all the subsequent problems to be
treated will have some measure of apparent order it is
best that the full set of differential equations describ-
ing the phenomena be set down at the beginning. The
system for consideration is a liquid body at rest immersed
in a flowing or stagnant gas. The liquid is volatile and
the vapor is capable of chemical reactions with the ambient
gas. The following initial assumptions will be made
concerning the gas:
1. It is a continuum.
2. There is heat transfer by conduction only -
no radiation is considered.
3. There are no overall mass sources.l
4, Mass diffusion occurs by a concentration
gradient only. Thermal and pressure
diffusion are neglected. The validity of
this will rest on further assumptions to

be made.,

1. However, there may be individual species mass sources due
to the presence of combustion.



5. The mixture at any point in the gas 1is a
binary fluid. Only two species are allowed,
e.g., fuel vapor and a ficticious single com-
ponent product gas. Thus, the extreme complexi-
ty of multicomponent diffusion is avoided.

6. There are no overall or preferential species
body forces. (gravitational, centrifugal,
electromagnetic, etc.).

7. The flow is locally laminar,

Then following Tsien (3) and Penner (4) the

governing equations are given in Cartesian tensor notation

Continuity
é_ *v.* = 0O

e+ ax;’k? ") (1.1)
Species Continuity (kK =1,2)

D Y LD » » > (1.2)

e e w197 W) = '
Momentum

Dwv* d *> 3 »* -

== [ pv¥2_Jyr=-L3pT L L 3T (1.3

5o = (Sier Ve Axi*)vJ st axr $* I xs
Energy k

DA AQ* * *

= a* iR : . |D (1.4)
+ ——— — .
Do~ b P e et Y wignt é)
E
The diffusion velocity, V&. , is given by
(8
* * )
V.. = -D, —S—x?-'u" Ye ) (1.5)

+* 1

and the relation of the mass weighted average velocity, WV —,

{

1. This is the velocity of the center of mass of a fluid element.



and the absolute velocity of species K, ka', is
t
A X
Ve = v +V\<,; (1.6)
* .
The shear stress tensor, 2:- y 1s given by
T (3\/ D 5 av/
ax* ax$ /‘2 ax (1.7)
A . L
\ *"L
£i3‘= 0 (}#;

A . .
The heat flux vector, C)i , contains both heat conduction
and diffusion and is given by
X

Q; = )\"Q_I: -9 Z_Y A ch (1.8)

3 x{ K=1.

The dissipation function, Q*, is given by

* * # * 2 2
d ,-_-% (Ele+ Q_YJ )+’“‘"(3;;Vx ) (1.9)

The energy equation, Eq. (1.4), refers only to sensible
enthalpy and cth must therefore be included. 4{.1“* and
3CH can only be determined if chemical kinetics are
considered.
Except where noted the following additional
assumptions will hold through most & the work:
8. Each constituent of the mixture will obey
the perfect gas law, éach component being
thermally and calorically perfect.
9, The viscosities, Q‘EX: product, and thermal

conductivity will be specified functions of

temperature only.



10. The specific heats of each species will be
the same, implying equal molecular weights
and making assumption 4 above plausible.

Then the state equation is

Pe=Rrgel = RYgxT

P - F%**'P;f

9*H= ??‘*'9:

* X X_
aﬂ.h—cPKT = ¢

* x
. ot = 9™ Yie
The transport property laws are

A
PR pig o€ T e

(1.10)

*Tin'*

P

9"0:_ ecT"GDnz )\* < T:u ﬁ,\ (1.11)
Egqs. (1.1)-(1.11) together with appropriate boundary
conditions are sufficient to specify the gas dynamic problem
if chemical kinetics expressions are used to determine WK*.
In what follows it will usually be possible to bypass the
chemical kinetics problem. In fact, byg? and consequently
%”;H will be set equal to zero for the present and
consideration will be given only to regions where chemical
reaction is absent. Regions where it does occur will be
treated later.

"Eq's. (1.10) and (1.6) have as a conseguence that

2 % *
ZYKJ,KVi=c

K=



so that Eq. (1.8) is accordingly simplified.

Non-dimensionalization of the above equations is
affected by introducing a reference time, velocity, density,

temperature, length, and viscosity and by further assuming

A N A
Then

"

t= T/} | M uf/m
V= V?“/Lli Y =

= Cyf/’c‘f

¢ = 9%/ ¢ Re= Ufglxs
_ rx
-r = 1‘!/1}f M r
B Se= £ —
X; = X;/x:‘ | ¢* DOy
A = gt g Pr = "f.._...f-*i“
N
K=t U/ x Le = Sc/Pr
X2
P-F*/g:ur mgg*v*
2 9* u?
e * A
IR e -

These reference quantities are as yet undefined and will be

chosen differently for different applications. Continuity

becomes

J S A = (1.12)
%4 dt axc(?v&\ =0
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Combination of Eqs. (1.2) and (1.5) yields

3 3Yx OV _ A > dY,
K St TV T T 3 ReS¢ 3’&(» 3-;(\) (1.13)

Combination of Eqs. (1.5) and (1.6) yields a mass transfer

relation
A 3N -
Re Sc 3,,'_. = ?VY S&M (S m.‘,YK T Mk, (1.14)
Momentum, Eq. (1.3), becomes
\ av Bv
X+ vV ¢ - _123p Py
K '3 T T ¥ 5 = (1.15)
ot X, 3% § I
where
T = A )V‘ )V‘ S 3VL
Ry .1 1.16
‘j RC ;x X + %: kJ S—Xl ( )

Combination of Eqs (1.8) and (1.10) yields the energy

eguation :
y AT ST > 2T )
"Rat+v‘;x o Re Pr 2« ('u ax;) M _9—
A M (v [_t_ie 3
—§-(Y 1) Két+v"§i; (1.17)
" where the dissipation function, QE s 18
. . | 2
M,.(Y-ll ,u )v dv ) ()v
- —_— =y |
$- )x A Ie SR (1.18)

The state equaﬁlon, Eq. (1.10), is

YM: P= Al L=T (1.19)



which holds also for each specie, Finally, the transport
laws are incorporated into the statement
EA]

rm=T sz = Hr) (1.20)
It will be found that the restriction on M2 will never
have to be used in what follows but is included here for
completeness. _ :

Now Eq's. (1.12)-(1.20) completely specify the

gas phase problem except for specification of the reference
guantities, 63 , and the boundary conditions for each

individual problem to be treated.

B. OQuasi-Steady Sphericallv Symmetric 3urnine Theory

The most common aporoach to droplet burning theory
is to assume spherical symmetrv. The coordinate system is
shown in Figure la. A spherical fuel droplet is assuned
burning in a stagnant ambient gas which contains an oxidizer.
Fuel vaporizes and transfers outward to meet the inward
diffusing oxidizer. Reaction takes place at an infinitely thin
spherical sheet, requiring infinitely fast reaction kinetics.
The process is maintained by the heat release at the spherical
sheet heat source (flame) causing a temperature in excess
of the droplet and usually of the ambient temperatures. The
outer ambient boundary conditions are usuallv considered

to lie at infinity. On either side of the heat source there



are only either oxidizer and inert or fuel vanor and inert.
Therefore, the reaction must take place at the stoichiometric -
mass feeding rate and the mass fractions of fuel and oxidizer
must be zero at the flame.

A brief develonment of the theory will be aiven
since it is essential to what follows. The differential
equations senerally used to describe this process in the

gas phase are the following:

Continuity

%l—r(?er) =0

(1.21a)
Snecies Continuity
2 dY AX(r2 élﬁ‘)
T T e L,( & (1.21b)
Momentum
= constant
P ) (1.21c)
Lnerecy
AT 4 (r2 JT)
\'An == = s &
9 e - de v (1.21d)
State
2
rMop = ¢T = (1.21e)



These equations can be obtained from Eq's. (1.,12)-(1,20)
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»

by therfollowing assumptions:

1.
2.

Spherical symmetry exists.

A steady state exists. t;‘ is taken as the
droplet lifetime. Ll: is taken as the
diffusion velocity, F:/ :x: , where

is, say, the droplet radius. Then disregard-
ing the initial ignition andrheat-up processes
the assumption is K 2?2 | ; the diffusion

time is very much shorter than the droplet
lifetime.

Gas speeds are very much less than the speed

of sound. Take u::am’where 1;," is

a typical temperature of the system and U.:

is then approximately a sound speed. Pressure
then becomes automatically referred to a typical
pressure in the system. Then from Eg's. (1.15)
and (1.16) it can be seen that if the Reynolds
number based on the speed of sound in sufficiently
large, the pressure is essentially constant
throughoﬁt the film.,

63 =0 and the reference transport propefties

are taken at some average film value.

The reference quantities in Egqs. (1.2la - c) are chosen to be

- o
¥ _ L £ _ A & »
X7= Wh= */el epnl
4 _ * %
,r" 9@ -r'_ = T:
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The boundary conditions to complete the problem specificatiqn
are usually written under the following additional assumptions:

5. The flame zone is collapsed to an infinitely thin
spherical sheet heat source.

6. The liquid is at a uniform temperature
and in a steady state.

7. As a consequence of 6 all heat transferred to
the droplet goes toward vaporization, not
liquid heat-up.

8. The liquid-gas interface is in equilibrium.
That is, the partial pressure of the fuel
vapor immediately adjacent to the liquid
corresponds to the equilibrium saturated
vapor pressure of the fuel at the liquid
temperaturel.

9. The ratio of liquid to gas density at the
interface is very large so that the gas
velocity is much greater than the liquid
surface regression velocity.

10. Le =1
Then in dimensionless form the boundary conditions at the
surface become

Heat Transfer at Droplet Surface

f{) = 8¥)q (1.22 a)
o B

1. This assumes infinitely fast evaporation kinetics.
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Mass Transfer at Droplet Surface

aY
1) = Do eni]

[ 8
Boundary Values

T(ﬂ.) =T YF(V‘..) = Yp“

P

At the flame

Stoichiometric Condition

ay S
ot 4 o) -
J.r)q"'-‘— Ar)r‘ °

Heat Generation

4T AT) dy,

fadil - al + A
&rl' dr & &r) ©
§ Fuel Side fi. Ox. Side q_

Boundary Values

T(r) =T is continuous
YF(’;) = Yo(r§) = O

v ),.‘ is continueous
At infinity
T(e0) =

Yg(") = Y°.e .

Eqds. (1.22 b) and (1.23 a) are obtained by evaluating

(1.22

(1.22

(1.23

(1.23

(1.23

(1.24)

Eq. (1.14) at the surface and flame respectively and noting

that at the surface the only species which flows is the fuel

b)

c)

a)

b)

c)
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so that VF= \V and by noting that at the flame Y,=Y°= 0.
The heat of reaction in Eq. (1.23 b) is independent of 'T}
because of the equality of specific heats assumption and

is therefore known for any particular fuel.

This formulation of the problem is well known
although the general approach here is a bit different than
publisﬁed previously. For the steady state problem it is
overrestricted in the number of assumptions actually needed
to obtain a rather simple solution. For instance assumptions
2 , 5, and 10 of Section A and assumptions 4 , 5 , 6 4, 7 ,
8 , and 89 of this section have been individually or
collectively relaxed in the literature. As previously
mentioned,reviews of this literature have beenrpublished
(1, 2). However, much of the essential physics for a great
number of problems is contained in this formulation and in
view of the physics left out (spherical symmetry cannot
exist) it is considered that refinements are somewhat futile.
In the unsteady state some of these assumptions become essential
for analytical treatment, but again it will be found that
some may be relaxed.

Egs. (1.21) subject to Egs (1.22)-(1.24) may be

integrated to yield the following well known results:

Ta ¥ o0y 2 Yo 4
f ¥ 3 Ye (1.25 a)
i1+ Y__?__n
AL
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YPL= 8/(+8)

(1.25 b)
M= anf1eBo(i-t+gYou)l) = n (148
¢ -z (1.25 ¢)
- ¥
%Ly 4nlr8) (1.25 d)
n A (14 You)
On the fuel side of the flame
AL (1.26 a)
8, e -
and on the oxidizer side
-™/r AN |
T=e - e — -4 -7 (1.26 b)
| )(Ba $-?)

Eqs. (1.25 a) and 1.25 b) define the conditions
which must hold if a steady state is to exist. They define
the droplet temperature ¢ if the saturated vapor line
relation is known for the fuel. The formal limit of pure
vaporization is obtained by passing Y;d’ to zero. Then
T = 1 and L
C. Convection and Spherical Symmetry

In actual combustors there is usually a strong
convective field about a burning or vaporizing dropletl. In
such a case the assumption of spherically symmetric burning
in a quiescent atmosphere of infinite extent must completely

break down. However, it is common to use the basic analytical

1. Typical Reynolds numbers for droplets ih a rocket engine
are Re €100. ,
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treatment of the previous section while modifying it in :
only one respect; the outer boundary condition is not

cast to infinity. There is no velocity considered tangential
to the droplet surface within the diffusion film and
spherical symmetry is still considered. An empirical
correlation is then used to determine the thickness of the
diffusion film. One such presently accepted relation is

the Ranz and Marshall correlation (5)

FRY 1
Re (1.27)

A
™ (with convection)

m (stagnant film)

Such relations are usually used only for pure vaporization
but may be extended to burning. They can be put into the
form of Nusselt numbers for heat transfer and essentially
are a measure of the quantity fk/(’l"'L\ in Eq. (1.25 ¢).
They have been used with some success in combustor
performance calculations (6, 7).

Such an approach, while conceptually offensive,

1/2 term in the

no doubt has its practical utility. The Re
previously cited correlation strongly implies the existence
of a boundafy layer, and im reality there can be no definite
edge to the diffusion film. This will provide a great

deal of trouble if the same concepts are applied in an

extension to the unsteady state where, again, artificial

1. This Reynolds number is based upon the droplet diameter
and, although never stated, should be based on the free
stream quantities (see p. 1luh),
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constraints will have to be introduced.

Extensions of these concepts into the unsteady .
state have been attempted., Wieber and Mickelsen (8) used
this convective correlation to determine instantaneous
vaporization rates when a droplet was exposed to transverse
acoustic oscillations of the ambient high temperature gas.
Priem and Guentert (9) have used the same concepts to
build a theory of combustion instability in liquid rocket
engines, Two serious objections to these extensions can
be raised: 1,) If the periodic variations in the ambient
gas conditions are made transverse to the mean flow over the
droplet or made across a stagnant droplet and if these
oscillations are of sufficiently low amplitude, this cross
flow is a low Reynolds number flow. In view of the above
implication of a boundary layer the functional dependence
of the convective correlation may seriously be in error.
2.) Frequéntly, the frequencies of oscillation which are
considered areﬂofithe order of 1000 cps.1 A calculation of
the diffusion time within such a diffusion film for a
typical droplet (150 microns in diameter, say) in a high
temperature combustor would show that this time is of the
same order of a cycle time, As is well known, when the

characteristic times of two unsteady processes become

1. This is the order of frequencies observed in high
frequency liquid rocket combustion instability.
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commensurate, important unsteady effects may come into
play. These quasi-steady convective correlations completely
break down under such circumstances.

The effects of such unsteadiness and other types
such as droplet heat-up, initial conditions relaxation,
and droplet radius contraction form the subject matter

which follows.

D. Summary

Under appropriate assumptions the basic equatiéns
of fluid mechanics have been written for the gas phase in
a form convenient for all problems to be treated in the
following pages. The common approach to droplet burning and
vaporization theory has been presented. This steady state
theory will be used both as an asymptotic limiting case
in time and as a steady state theory about which time and
space perturbation may be examined. Difficulties to be
encountered in the time dependent treatments will ultimately
result in complete rejection of the spherically symmetry

treatment.



- 20 -

CHAPTER II

UNSTEADY ANALYSIS OF SIMPLIFIED MODELS

A. Heat-up, Boundary Movement, and Initial Conditions

In Chapter I, Egs. (1.25 a and b) define a certain
liquid temperature which must exist for the system to be in
a steady state. This is the "wet bulb" temperature of the
droplet. It is clear, however, that such a temperature
will not exist in general immediately affer droplet formation
in an actual combustor. Obviously, there must be a transient
heaf-up period. Simuitaneously, the conditions of the gas
film surrounding a droplet are initially not those demanded
by a quasi-steady state solution. There must therefore be
a period of initial condition relaxation to the steady state
condition. Finally, it is clear that there can never really
be a steady state since the convective field changes as the
droplet changes speed, and the droplet radius always contracts
in time.

The above effects will be discussed with the aid
of the spherically symmetric, convective, stagnant film
model., The problem of droplet heat-up has been treated
before (1, 6) always by assuming a quasi-steady gas film
transient. Apparently this requires that the heat-up time
be much larger than the gas film diffusion time. The

standard treatments are always numerical; however, a quick
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analytical estimate for the characteristic time of heat-up
is obtained in Appendix A. It is obtained under the follow-
ing assumptions:

1. There 1is no vaporization during heat-up.

2. The Reynolds number between the ambient gas
and droplet is constant during heat-up.

3. The droplet temperature is uniform within
the droplet, implying a very large thermal
conductivity (small diffusion time) or rapid
internal circulation,

Of course, the quasi-steady spherical gas film is assumed.
The result is that

* *
2w = (93 el n* “|- \)(T e ~ T.0) (2.1)
3 ?. 'T'* T—*

The: first grouping is a characteristic time, the second is
an effect of the outer radius on the steepness of the
temperature gradient at the droplet surface, and the third
is the effect of the departure of the initial droplet
temperature from the wet bulb temperature. A comparison
of this time will be made with othér process times later on.
Consider now the problem where the droplet heat-
up time is very short and the primary unsteadiness is due
to the dfoplet radius contraction and initial condition

relaxation. Relaxing assumption 2 on p. 12 and taking
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the reference time, ¥

~ » to be of the order of the

droplet lifétime, Z:f , the differential equations, initial ,
conditions, and boundary conditions for the spherically
symmetric time dependent problem are

L2 .12 _
Kat " 3¢ - ©

(2.1 a)

o’ A, a N o 3 (r2 e )

K at dr ar ar (2.1 b)
T 3T L AT _ 23 3T
g — + m 25 . < 2 2

R 2t A e (2.1 o)
gT =1 | (2.1 d)
T(r,0) = T,(+) .
Tliw,=7 Thw ] =1 (2.3
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where kﬂ is defined by

- &L ¥ .
K, = Aty = K ¢:
o Cp ke l.*

For the Lewis number equal to 1, the mass fraction equation,
Eq. (2.1 b),is unnecessary; however, consideration of this

equation and of other subsidiary conditions would have to
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be made for Le# 1 . In particular there would be no
justification for assuming P to be constant in time in
Eq. (2.3).

It is assumed that this non-linear set of equations
of the parabolic type is well-posed under the imposed
conditions, Eq's. (2.2) - (2.4). Note that since a total
derivative appears at a constant temperature surface in
" Eq. (2.4), this is a non-linear boundary condition.

Briefly reviewing, what is in essence usually done
to this set of equations is to consider all derivatives of
order unity and consider K large. This assumes the
ratio of a typical time in the problem, say the droplet
lifetzme, to a typical diffusion time is very large. Then
all the terms containing time derivatives are neglected.
Thus, from Eq. (2.1 a) ® is constant in r and Eq. (2.1 c)
becomes an ordinary differential equation for T which may
be integrated subject to Eqs. (2.2). Eq. (2.4) may be
used to find the interface position as a function of time.
Another approach is to consider slow evaporation so that
the convective term in Eq. (2.1 c¢) disappears. Then
essentially the heat equation remains, but with a variable
density which cannot be aésumed constant unless Eq. (2.1 d)
is abandoned. If the time derivative is also dropped
here, essentially Laplace's equation remains and may be

immediately integrated as before.
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As pointed out by several investigators (10, 11),
there are many things wrong with this approach. First,
the problem is solved without reference to initial conditions
and the solution is able to satisfy only the steady state
conditions. Secondly, if the heat equation without the
convective term is adopted, account is not given to important
density variationsand outward convective effects that occur
in high temperature work. Finally, if Laplace's equation
is adopted for the problem description and r; cast to
infinity, the droplet vapor content of the surroundings
decreases from an infinite to a smaller infinite value as
the droplet vaporizes.

Concerning the work which has been done on this
and other related problems, Fuchs (10) obtained typical
correction factors to describe the relaxation of the initial
condition to the quasi-steady condition and the error
made in the droplet lifetime due to the time dependence
introduced by the contracting radius. This was, however,
carried out for the heat equation and by approximate
methods. Also, only one type of initial condition was
considered, To = 1.

An exact solution for the heat equation under very
general conditions of moving boundaries has been obtained
by Kolodner (12). The solution is in the form of
non-linear integre-differential equation for the interface

position, if this is any simplification. The solution is
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based on the existence of the fundamental solution

to the heat equation and uniqueness of the solution has
been shown. In certain cases this work lends uniqueness
to a great many other solutions as appear, for example,
in Carslaw and Jaeger's work (13). For instance, in
Neumann's problem of linear flow there is

a liquid initially at temperature T and a solid initially
at X £® which freezes into the liquid, the interface
position given by ')( . Stating a condition that the
temperature at x = 0 is constant for‘ali time, a solution
may be found where the interface position is given as

x/el/2

= constant. Uniqueness for the problem is shown by
Kolodner's work. This is a "similar" type solution and
may be applied to many other problems with and without

the convective term. Kirkaldy (11) has obtained an

exact solution to the spherical problem with the
convective term included but under the assumption that ¢
is constant. It is found that if r;_,{”? is constamt
the equation will reduce to an ordinary differential
equation in the independent variable 7 = r/tv‘. The
objection here is that tis procedure will not work

for evaporation, but only condensation, because of the
finiteness of rp at tt= 06 . Also, density being constant
is an intolerable assumption in the present work; finally

these similar type solutions are only able to satisfy very

specialized initial conditions.
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There is one other interesting result obtained
from these exact solutions. As expected, in a great many
cases an appropriate expansion of the solution in a series
will yield the quasi-steady solution as a leading term
with the remaining terms important only near ¢ = O .
Also, the interface motion is many times well approximated
(sometimes exactly) by the quasi-steady solution. However,
in the absence of an exact solution to the problem of
interest, it still remains to investigate the error
introduced by the quasi-steady theory. When K221 it~
is natural to attempt a regular expansion in the parametef—{z.
However, the time derivatives are lost in the leading
order set of differential equations. It is clear that
this is a singular perturbation problem with wild
behavior taking place near & = ¢© . What is then usually
done is to attempt fo find an appropriate scale
transformation of the independent and possibly dependent
variables to retain the time derivatives in the leading
order system of equations while, hopefully, obtaining a
system amenable to exact analysis. Such a transformation
has not been found.

Therefore, in Appendix A an alternate procedure
has been adopted. The regular expansion in %2 is carried

out which yields a correction factor to the droplet radius



to account for non=steady effects of the changing drop-

let size. It is valid only after a sufficient time has
elapsed for relaxation of the initial conditions. Then
under an admittedly inconsistent assumption that 9(",1’.)'—'?(?,0)
for a2ll time a method developed by Frish (13) can be
adapted to find a typical time estimate for the relaxation
of the initial conditions. The correction factor obtained
for the droplet radius is well behaved and, of course, of
order -%Z for only two cases: 1l.) The droplet must
vaporize faster than the quasi-steady rate ( r12 decreasing
linearly in time for r;/r; constant in time), and 2.) r;
cannot be cast to infinity. Thus, the correction is valid
only for sufficiently high quasi-steady mass vaporization
rates (see Eq. (A-19) of Appendix A). The estimate for

the time required for initial condition relaxation is given

by
(%) ’
s, . st -1|B (ﬂ
» Cg T L7 2

fre=\E T ) : elrr Y [7 te - (""}4‘-'

A b (148) l+83

\ (2.5)
- L

where \* M s 7,“) is the quasi-steady

T - T
distribution obtulnable from Egq. (1.262), and V% is the
initial distribution at #=6. This integral has been

numerically evaluated for y.-[ and is tabulated in
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Table 1. Again, an important observation is that ¢ cannot
be cast to infinity or the integral will blow up. More will
be said concerning this in Section B of this chapter.
. . * .
For convenience Appendix A uses fF as the quasi-
steady droplet lifetime and is repeated here for convenience

for ) /In constant.

»

* g’
td*lg ( Poo :: "'-:1)(%;)(\-—;'{'_)/21..(“»8) (2.7

The typical gas phase diffusion time is

¥ . » b

= &
, A
Therefore, the time ratios of interest are
L
4 ¥
¢, = tau 2,5 Tt ¢ a tle
t’ b 2 Y ) 3 ——’-
d td 2

The first ratio is obtained from Eqds. (2.6) and (2.1)
4 | o
tl = T;F_!————": E")%‘g‘ %L(HB)
£ ~ 'we
The result is primarily dependent upon the actual level
of the wet bulb temperature. For volatile fuels or liquid
oxygen the hope that Z;~<<'| is usually satisfied quite well
for sufficiently high combustion temperatures. For example,
take the case of ethyl alcohol burning with liquid oxygen
in arcombustorrat 150 psia, Approximately for the alcohol,

t ~ 0"



At a nominal Reynolds number of 40 based on the droplet
diameter
zZ, ~ t/éo
t3 ~/07?

However, these numbers are heavily dependent on the actual
chamber gas density and droplet Reynolds number. For any
application a careful check should be made. In deriving
the heat-up time the assumption was made that essentially
Z, /t,_ >2 ) . It is seen that while in this particular
example the assumption may be reasonable, it may not be
in other examples. However, it is believed that the order
of magnitude of all the results is essentially predicted
by the above developments even in view of many rough and
sometimes inconsistent assumptions. Also, the dependences
of these time ratios upon system parameter changes should
be reasonably correct. The analysis above and in Appendix A
attempts to separate effects although in reality the problem
is a combined one, all processes taking place concurrently.

A further time ratio of interest is the liquid
diffusion time to gas phase diffusion timej; this will be
reasonably important in the investigation of periodic
solutions to the burning probiem. In the present example

2, = (SLein2®/ At ) /¢, ~ s0?

Note then that in this example assumption 3 on p. 21

is violated unless there is internal droplet circulation.



Note finally, for a smoothly changing convective field
the unsteadiness due to a change in the effective s
will also only be of order %; if the change takes place
over a droplet lifetime.

The conclusions to be drawn are that in many
pratical situations the heat-up time and initial condition
relaxation times take place within a small fraction of
the droplet lifetime. The unsteadiness due to droplet
radius contraction is an effect of order \/t{ and
may often be considered negligible. Therefore, it may
be reasonable to investigate the existence of a
periodic solution to the burning problem when the ambient
gas is undergoing acoustic oscillations while using
the quasi-steady solution as the steady state solution

and be assured that some measure of reality will be

contained in the results.

B. A Difficulty in the Simple Approaches

It will be recalled that in two cases already
treated y could not be cast to infinity without the
results becoming meaningless. It should be observed
that even in the quasi-steady treatment the ability
to consider the outer boundary at infinity is a special
property of spherical symmetry. Cylindrical symmetry

(a cylindrical liquid surface) or a plane model would



result in a zero burning or vaporization r;te if the
outer boundary were cast to infinityl. In the time
depen?ent case even spherically symmetric models now give
trouble. This trouble will again appear when a periodic
solution is attempted for the spherically symmetric
model; of course, it will also appear for the plane model.
Therefore, somewhat artifical conditions must be imposed
concerning this boundary in order to obtain well-posed
problems. —

This difficulty is a direct result of neglecting
the actual convective field which must exist either by
natural or forced convection; part of the physics is left
out. It will be seen that even a plane liquid surface
will yield a well-posed problem in the steady state
through the well known phenomena of a boundary layer if
proper account is taken of convection. The time dependent
problem for any shape can also become well-posed if
this part of the physics is included. Of course, proper
treatment requires the abandonment of certain geometrical
symmetries.

Still, certain interesting and informative results

may be gained through the simpler geometries under

1., Cylindrical symmetry would result in M e ovre & ‘/.in L
where r. is the outer boundary position specification.
For a plane model wm a2 ov ‘/xc .



artificial boundary conditions. Therefore, before
turning to the more complex problem some more attention
will be given to the models with simple geometrical

symmetry.

C. Periodic Solutions to Plane and Spherically Symmetric
Models

It will now be considered that a well-defined
steady state burning or vaporization process exists. That
is, an infinite time has elapsed since the initial
transients have started and the droplet or liquid
surface does nét contract in time. Section A of the
chapter has attempted to evaluate the mathematically
asymptotic sense in which such conditions may be
fulfilled. Now it is assumed that acoustic oscillations
of circular frequency Lo* are taking place in the
ambient gas and an attempt will be made to find a solution
of this same frequency to the burning problem. A first
variation about the steady state will be considered;
amplitudes will be arbitrarily small so that the perturbation
problem will be linear in the perturbation amplitudes.

With the introduction of a new characteristic
time, \/u;* , a further criteria to be introduced is
that td"w* >») so that the interface position

moves negligibly far in one cycle. This is somewhat

\



equivalent to the statement K >\ since effects of
frequency on the diffusion field will not be expected
until ew becomes of the order of 1 /t:;_‘ .
It is best, therefore, to consider this as a "pourous
plug" or '"pourous sphere" »problem, That is, the liguid
is fed to the surface of a pourous metal of fixed
dimensions at the appropriate mass flow rate to allow
the liquid to just completelv wet the nlug surface
at all times. The liquid body thus has a fixed
dimension for all time. For real problems the asymptotic
sense to which this is valid has ijust been eiven above.
This is, in reality, a nearly periodic phenomena which
is forced to be periodic in the 1limit. It is further
assumed that in the unsteady state, no wave propacation
phenomena is present in the diffusion film. That is, the
cycle time is very long compared to the wave travel time
through the film.

Consideration will be siven to two problems.
The first will be the influence of periodic oscillations
on the vaporization rate from a plane liquid surface. As
mentioned before, the outer edse of the diffusion film
even in the steady state must be specified for this
problem, An artificial boundary condition is therefore
introduced; it is also continued into the unsteady

problem where it is assumed that this nosition
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does not vary in time, This outer boundary may be

roughly interpreted as a flame, edge of a vaporization
"boundary layer", or some sort of artificial mass absorbing
and releasing, heat releasing surface. If proper account
would be taken of convection it is obvious that such a
boundary would probably move in time. However, the plane
symmetry, essential to analytic simplicity, would be lost.
The oscillations at the edge of the film will not necessarily
be taken as isentropic since they are oscillations which

in a real case would exist still inside of a diffusion

film. The second problem is concerned with periodic
oscillations imposed "at infinity" over a burning droplet
with spherical symmetry. Here a well defined flame boundary
exists and it is initially hoped that a well-posed

problem will emerge. No convection is considered, and

the oscillations at infinity must be isentropic since
no diffusion is present in a uniform field.

Consider first the plane problem; the coordinate
system is shown in Figure 1lb. All of the assumptions
pertinent to the development of the spherical model in
Chapter 1 are retained except that plane symmetry
replaces spherical symmetry. The steady state solution
is developed in Appendix B, as well as the periodic
solution. A slight modification in the transport property
law is used here as compared with assumption 4 on p. 12

of Chapter I. Although an average value is used for the



steady state, this average value is allowed to vary
in time under perturbation. Thus, the average value is

assumed to vary as
A

w
W T Cx})

Then three particular problems are discussed.
The first solves the problem where the temperature
perturbation at the liquid surface is zero. This 1is the
asymptotic limit of an infinite slope of the fuel partial
pressure vs. temperature curve at the sauration line.
It still retains the concept of an equilibrium boundary.
Under such a situation there is no unsteady heat
transfer to the liquid going towards heat-up rather than
vaporization, and, also, the mass fraction equation 1is
uncoupled from the energy equation. See Appendix B for
the details. The second problem relaxes the above assumption
When heat transfer becomes important to the liquid as far
as heat-up is concerned new parameters which enter are the
ratio of the gas phase diffusion time to the liquid phase
diffusion time and the thermal conductivity ratio between
the gas and liquid. For the example of Section A of

2 and 1/2,

this chapter these numbers are approximately 10~
respectively. The third problem is the relaxation of the
assumption of an equilibrium boundary. It is clear and

well known that it is possible that mass may not be

able to vaporize as fast as is demanded by the diffusion
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field calculation based upon an equilibrium boundary
condition. What is essentially assumed normally is that
the kinetics of evaporation are much faster than the
diffusion speed. Evaporation kinetics have been recently
reviewed (15) and will not be discussed at length here.
It is sufficient to say that the driving force is the
difference between the actual partial pressure of the
vaporizing substance above the liquid and the equilibrium
partial pressure at the droplet temperature. It is
governed by an imbalance in the collision processes

at the surface; that is, the emitted molecules exceed

in rate those incident on the surface. Since this is a
collision process, other parameters must enter, e.g.,

the molecular weight of the vaporizing substance and the
"sticking probability" or "evaporation coefficient".
However, to treat this problem a rather simple-minded
assumption was used. Only perturbations in the mass
fraction difference were considered. Therefore, the

perturbation in the mass vaporization rate is
MF(M =m (VF equilibrium ~ ?’F actual)

m is calculated on the basis of a postulated steady state
mass fraction drop.

The results for the plane model are summarized
~in Figures 2 - 6. These figures show the ratio of the

instantaneous vaporization rate perturbation to the



product of the steady state rate and the instantaneous
pressure perturbation. -This quantity is plotted vs. a
frequency nondimensionalized by the film diffusion time,
(9‘* cp¥ x;“)/ x ¥ . As expected, significant
response occurs when «J) becomes o L],

Even in view of the extreme simplicity of this
model the results show much of the physics involved in
unsteady diffusion processes; many of the qualitative
features are expected to carry over into a more complex
model in Chapters III and IV, Figures 2-4 show the results
for the first problem mentioned above. At the low
frequency end the quasi-steady result is recovered. That
is, the phase obviously goes to zero and the magnitude
is OfCr-1]. This magnitude is extremely important
in applications. It is of the order of the temperature
perturbation which is depressed from the order of the
pressure perturbation by ¥-f, approximately. It is due
to the fact that the quasissteady state is dependent
upon temperature sensitive functions, e.g., BB and ¥ .
For no convection the vaporization rate is almost pressure
independent. As the frequency rises the temperature gradient
at the surface increases and undergoes a maximum. This
is characteristic of diffusion processes in the unsteady
state. For instance, if the temperature were oscillated

at one end of a solid slab the temperature gradient at



the other end would undergo a maximum in a certain
frequency range. However, this gradient would go

to zero in the limit of infinite frequencyj; this

is not the case for a compressible fluid. When the
frequency becomes high enough a phenomenon known as

the high frequency boundary layer comes into being.

When a gas is compressed it attempts to heat-up instan-
taneously. However, if a boundary is maintained at

a particular temperature (U‘(o) =0, = o) heat
diffusion must take place to smooth out the temperature
field. At sufficiently low frequencies this can occur.
But when the cycle time becomesshorter than the diffusion
time this distribution cannot take place. Therefore,
steep gradients take place near the non-natural boundary
condition and diffusion is absent in the main part of

the field. 1In fact, the heat transfer goes to infinity
as the square root of frequency and the phase goes to /4 .
The analytical result of a high frequency analysis is

that for A = O

Mg Co) r-l i
= fiew — _ + O[] + O[ =
w Y Ry fm] (2.7)

The details of this analysis are not presented since

they are a simplification of high frequency techniques
1 . o

to be used later on. It is important to note that

except in the transition region from low to high frequency

1. High frequency limits in this work are under the constraint
that the wave propagation time in the film is still short
compared to the cycle time. See p. 108.



behavior the response function is greater in magnitude
for higher steady state mass flows. Another important
result is that the phase is restricted within a narrow
band and that a significant component of the response

is in phase with the pressure.

Figure 5 shows the effect of considering the

liquid heat transfer and temperature perturbation. The

case with 7\‘_/? '\/2:', 2 Y2 and b = 15% remains

within +5% of the case where these parameters are
zero and infinity respectively. Therefore, this
curve can also be used to compare with Figure 4 for the
effect of ¥  and 63 . It is seen that an area of
additional response occurs for the rather severe condition
7\\./.? ‘V"z‘: = 45 . This is apparently a coupling with
the characteristic time of the liquid diffusion process.
Over the main portion of the curve,however, the
qualitative behavior is the same. Again, the vaporization
rate perturbation will go to infinity as the square root
of frequency but depressed in level since some heat
transfer goes to the liquid.

Considering the effect of ' @ and 03, (2)
is important only at very low frequency since it is an

indicator of a temperature sensitive function. An increase

1. b is the dimensionless slope of the fuel mass fraction
vs temperature curve at the saturation line. See
Appendix B.
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in Z’ ,however, generally raises the response by at least
the percentage of increase in ¥ over the full range
of frequency. Also, note an important effect in the high
frequency 1limit, Eq. (2.7), directly showing the effect
of compression work heating the gas.

The effect of finite evaporation kinetics 1is
shown in Figure 6. TFor a rather severe but probable 10%
mass fraction drop in the steady state the qualitative
features remain the same, but, of course, the magnitude
is depressed. Here, however, the "infinity" at high
frequency will only appear 1if CTL is held identically
zero (b = 00)., For if O, # 0 some heat transfer
must go to the liquid as Aw for w-»ee, If o,
and consequently the equilibrium value of éﬂ,(o)
were to remain finite then the actual value of y@.(o)
would have to go as Aw to maintain the required
vaporization rate perturbation. In such a case, however
aff'l (0) would go as w saying the mass transfer rate
was going as (w ; this is an obvious impossibility. On
the other hard, if O7, were to go to infinity as Yw
all heat transfer would go to the liquid as w which
cannot be provided.

The true behavior must be that U7, adjusts
so that the component of heat transfer of C)[ﬁz;] is
just absorbed by the liquid. What is left is a finite

perturbation in the vaporization rate of OLy]. These
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problems will only appear, however, in the very high
frequency range where other assumptions which have been
made will also break down. It appears sufficient to say
that over a reasonably wide frequency range (O = W £ 40 )
the qualitative behavior of the vaporization rate

response is given correctly by neglecting evaporation
kinetics.

One of the primary results of the plane model,
then, is an estimate of the validity of certain
simplifying assumptions. From now on the assumptions that
b =e0 (0;=0) and ?%(U)actual = ??(O)equilibrium will be made
with no further comment. They will become essential
for simplified analytical treatment of more complex
models.

It is now desirable to attempt to obtain a
solution to the perturbed spherically symmetric problem
in the hope that a well-defined flame boundary condition
will emerge. In fact, a prime purpose is to find the
perturbation in the mass burning rate at the flame since
it may have important application to the field of
unstable combustion. For that matter it is also
probable that the vaporization rate perturbation is
significant in this respect. Return, then, to the
assumptions listed in Chapter I pertinent to the

spherically symmetric model. Consider also the comments

on the frequency level at the beginning of the discussion
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of the vplane model. One further remark 13 now necessarv;
while the collaepsed flame model mav bhe apnlicable in the
steady state, it may break down in the unsteady state.
It must be further assumed that cvcle times are much lonser
than typical chemnical kinetics times. In fact, for the
steady state model the assumption is that the chemnical
times are much shorter than diffusion times, Here, therefore,
a restriction must exist on how short the cvcle times can
be made in relation to the diffusion times. The validitw
of the collapsed flame zone model will be discussed more
fully for a more realistic seometricel configuration in
Chapter I1I.

Appendix C contains the analytical development
of the perturbed spherically symmetric model. Rather
commonly, an expansion of the solution to periocdic diffusion
problems in powers of frequency is a convercent one. In fact,
this was true for the plane model. It is shown, however,
that this procedure diverces for the sphericallyv symmetric
model if the outer boundary is cast to infinity. In Section 3
of this chapter the reason for this was pointed out. In
reality, no physically realistic spherically symmetric
pressure oscillation can be provided unless there is some
kind of sphericallv svmmetric mass source and sink bpiston-
like boundary. This is therefore not a well-posed problem
for arbitrary frequency. However, the asymntotic case of
high frequency can be treated because of the nhenomenon of
the high freauency boundary laver. If the condition at in-

finity is a natural one, i.e., an isentronic oscillation, a



solution will exist in an asymptotic sense, Infinity

is practically reached at a short distance from boundaries
diffusion becomes localized within distances of O [ Y]

of boundaries, the outermost boundary here being the flame.
The details of this high frequency analysis are also contained
in Appendix C. From this treatment it is also clear how

the high frequency analysis was constructed for the plane
model. Even a more detailed description will be given

in Chapter IV.

The result in that once again the vaporization

rate perturbation goes to infinity as the square root of frequency.

A
Mg () -2

= - -1

= ¥ + oL (2.8)
& P B oy 7

This should obviously be compared with Eq. (2.7). On the
other hand an extremely striking result is that the flame

movement and mass consumption rate perturbations remain

finite in the limit of infinite frequency. Also, depending

upon the sign, which has not been closely checked, this
perturbation is real. That is, it is either in or 180°
out of phase with the pressure.

The reason this finite behavior occurs is that
the compression sets up a convective field which is natural
for the boundary (flame); that is, the boundary conditions

are automatically satisfied. The flame movement occurs
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(in the 1limit of infinite frequency) solely because the
field is compressed. Note that this burning rate
perturbation is made of three components: l.) that due

to an increase in the mass fraction gradient, 2.) the flame
movement sweeping out the steady state mass flow, and 3.)
the flame movement contracting the surface area. It is
clear why the burning rate was not investigated with the
plane model. It would have become infinite as Y& since
the "flame" boundary was held stationary, a non-natural
condition.

Briefly reviewing, with the aid of quite simple
models under rather artificial boundary conditions some
interesting results have been obtained concerning periodic
oscillations of the droplet burning configuration. The
physics contained in the results must in some degree
carry over to a more complex model of the burning process.
Therefore, encouraged by these results it remains to

construct this more realistic model.

D. Summary

Conditions have been established whereby it is
reasonable to investigate the existence of periodic solutions
to the droplét burning problem., These conditions also
evaluate the validity of the quasi-steady assumption

in steady state droplet burning theory. Difficulties in



the mathematical formulation of the unsteady burning
problem have been pointed out. Finally,-two geometrically
simple configurations have been analysed and periodic
solutions obtained under certain conditions. The physics
contained in the results are sufficiently interesting to
warrant the attempt at a solution to a more realistic

and well-posed problem.
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CHAPTER ITII
A CLASS OF CONVECTIVL DROPLET BURNING PROBLEMS:

THE STEADY STATE

Statéﬁent of the Problem

| In view of the difficulties encountered with
lified geometries as far as realistic results are
erned it is desirable to return to the full Navier-

es problem. In fact, consider a stationary liquid fuel

body of arbitrary shape immersed in a uniform free stream
flowing at a velocity, Lla:. The free stream contains

an oxidizer of uniform mass fraction, \%w' A steady
state is established whereby inward flowing and diffusing
oxidizer meets outward flowing fuel at a thin flame

zone which is wrapped about the leading edge of the body.
The question of what is meant by a steady state has
previously been discussed. The question of whether or
not a flame can exist from the forward stagnation point

will be discussed in Section C. It is desired to solve

this problem for the flow field in the vicinity of the liquid

body and to determine local vaporization and burning rates.
Then consideration will be given to a perturbed problem
by introducing a travelling isentropic sound wave in the
free stream. This wave of arbitrarily small amplitude will
travél parallel to tHe free stream flow and will be

periodic in space and time. It will be assumed that the

liquid shape does not oscillate in time.



The case of Reynolds number much greater than
one will be treated. In actual combustors this is the
case usually encountered during most of a droplet's life-
time. It must be recognizéd, however, that the asymptotic
procedure which will be used for large Reynolds number
is going to be pushed quite far concerning a practical
use, That is, it is hoped that reasonable quantitative
information is given for Re as low as 10, The case of
very large Re does not exist in practice either because
droplet shattering will occur or because drag always keeps
the relative speed between the ambient gas and droplet
reasonably comparable.

It is clear that previous geometrical symmetry
in two dimensions is lost. However, it will be assumed
that the liquid body is either axi-symmetric at zero
angle of attack or that the body is symmetric about an
axis plane at zero angle of attack.

The free stream Mach number is to be small
enough such that its square is negligible compared to
unity. However, since strong temperature differences
will necessarily appear, the steady state flow will not

be considered incompressible,

B. Differential Equations and Boundary Conditions
Basically following Van Dyke (16), an intrinsic

orthogonal coordinate system shown in Figure 1lc is adopted.



The coordinate running along the liquid body from the
forward stagnation point is s with corresponding velocity
u. The normal to s is n with corresponding velocity v.

The reference quantities of Chapter 1 are as follows:
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Therefore, K = 1, P1r is the actual free stream Mach
number,M, and Re is the Reynolds number based upon
droplet nose radius. Although this chapter is primarily
concerned with the steady state, the time dependence and
perturbation equationswill be developed here in order to
avoid repetition in Chapter IV. Then with J§=! for
axi-symmetric flow or ; = O for two-dimensional

flow Eqs. (1.12)-(1.20) are written by usual vector
relations where 4 1is the body curvature
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Transverse Momentum
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Dissipation Function
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Longitudinal Diffusion
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Transverse Diffusion
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Transport Property Law
AN
=T
~ (3.10)

Note in Eq. (3.10) that with ‘/ﬂf =/ﬂ3 a quite reason-
able average law should result since **< T2 <'T;*
in general.

The boundary conditions far away from the body

must be
w(s,c0, ) - !+£ﬁ(s,t) (3.11a)
vise, t) = € \7(5)*:) (3.11b)
g(s,0,t) = | + & gts +) (3.11c)
T(s,e0t) = |+ aT(st) (3.11Q)
PLs, %) = o= +e Flst) (3.11e)
Yols,mt) = Yo . (3.11f)

The parts without g are the steady state quantities; those
including & are perturbation quantities about the steady

state, £€<< | . The perturbation functionsare yet to be



defined and constructed.

The flame (sheet heat source) is defined as the

location where inward flowing oxidizer meets outward

flowing fuel in stoichiometric proportions and where

the fuel and oxidizer mass fractions are zero, Since this

is a pure heat source, continuity in mass flow, temperature,

and the stress tensor must prevail across this discontinuity.

Therefore, the boundary conditions at the flame which

also define the flame position are

Mass Fraction

Y,,YS;,(t), ng(t)){] =Y _[s,000 nge) t]= 0
Longitudinal Diffusion
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Transverse Diffusion
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Mass Continuity
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Normal Stress Continuity
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is continuous

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)



Shear Stress Continuity

?L:/' ) &#L—

is continuous

Temperature Continuity

T

N is continuous

Longitudinal Heat Source

1—5 "' T + E,r: % YFS) =0
fuel side ex. side Sc¢ +

Transverse Heat Source

T - T + ._P—C YF = O
h'{ve,‘ svde nOK' side Sc % n \‘

The following boundary conditions will be

imposed at the liquid surface:

Velocitx

uls,0,t)= 0o V(s t)= V(s t) =V (5,4)
w

Temperature

1-(5,0,t) = T = constant

Mass Flow

e _
Re Sc ch)w— Sw Vw Fw ngVw = mw(Y‘:w“l)
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Re Pe —K‘Lq ?é =~ = '%%u
had 00

(3.12f)

(3.12g)

(3.12h)

(3.121)

(3.13a)

(3.13b)

(3.13c)

(3.13d)
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Mass TFraction

YF_—(S,O/‘&) :7Fw+ & #Fw(s,t)

(3.13e)

Eq. (3.13a) contains the no slip condition at the wall.
This can, of course, only occur if the liquid viscosity
is sufficiently high relative to that of the gas. There
must be some slip velocity, in reality. However, the
asymptotic procedure to be used in the solution of the
problem will demand that u changes of order unity from
the free stream to the boundary. This will, of course,
always occur in the vicinity of the stagnation point,
Therefore, other asymptotic procdures as used, for
example, in liquid flow over gas bubbles (17) where the
slip velocity is large must fail here, It is probably
best to consider the no-slip condition as a 'zeroth
order" condition in an appropriate expansion in the
slip velocity characterized by a small parameter,

The temperature condition, Eq. (3,13b), has
been discussed at length before. These previous discussions
also explain the mass fraction condition, Eq. (3.13e).
The mass flow condition, Eqs. (3.13c) and 3.13d), are
merely the transverse diffusion and heat transfer conditions
at thg wall. Note \/Fw.—_— Vi since the inert
cannot move in an absolute sense at the wall.

Eq's. (3.1)-(3.13) represent the differential



equations, algebraic conditions, and boundary conditions
which specify the problem. Except for specification
of the perturbation quantities in the free stream it
is assumed that the system will admit a solution. The
solution will be obtained by the method of inner and
outer expansions. For Re >>1 it is presently believed
correct that the expansion of any quantity, f( s,n, t),
in the form

o0 . -

f- 2 R n o

(=0
will yield the proper outer or essentially inviscid set
of equations. The zeroth order yvields the Euler equations
and effects of viscosity and diffusion do not appear until
second order. This set cannot, of course, satisfy
the no slip boundary condition at the wall and still
satisfy all the boundary conditions in the free stream
since the highest derivative in Eq. (3.3) is lost in the
zeroth order term. Indeed even the flame cannot exist
in this region since no diffusion is present in the
leading order terms. There must, therefore, exist a
region of rapid transition in a layer close to the
body, the inner region or boundary layer. For changes
in u of order 1 through this layer it is presently

believed correct that an expansion of the form
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kazn Re
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p(s,g,t) = Z (ﬁ{é)" P“’ (s, q,t)

YK(S,‘J"U" 2('\/—51—6)”. YK(J(S’H’TJ (3.14)
<=0

will yield the proper equations for the inner region,

The time dependence in the problem is assumed independent

of YRe so that it may always be included in th= leading

order set of equations. Substituting Eq's. (3.14) into

Eq's. (3.1)-(3.10) there results for the zeroth order

(o)

system (the superscript is left off for clarity) in

the inner region

f")' Oy + ({‘-1 gu_)s +(r‘& gv)'z:o (3.152)
9[\(“ FuYeo tv Yy ‘31 /*Vﬂa,)?{ o (3.15b)
9Yut*‘*“s+“’u1]‘FPs—(fLu7H,=o (3.15¢)
Pn=©° , (3.15d)

9{—]'t+\.LTS+v } _____“a’_ M(Y—')(P-l—u%)*@_:o (3.150)
. e



= l\/\z(_b/‘| (W9 z
¢ ey (3.15f).
W= Uy (3.15g)
7‘3—"5- Yo, = ¢v Y - 8w Vic (3.15h)
¥mip = T (3.151)
o )
P (3.153)

As pointed out by Van Dyke (16), w, will not appear
until second order.

Eq's. (3.15) are nothing more than the equations
for the Prandtl boundary layer. Under the previous

2 << 1, §is negligible and the term

assumption that M
involving WP, in Eq. (3.15e) may be dropped. Terms
involving the pressure are always confusing regarding this
point since M2 appears in the state equation, Ea. (3.15i).
This should become clearer later on., The term involving
P. 1is kept since it will be later found ofi/m] in
the problem of interest.

The surface boundary conditions Eq's. (3.13),
become to zeroth order

w(sot)=0 (3.16a)
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T(so0,t)=7T (3.16b)
o YFJ*(S’OJH: MW(YFW—'} (3.16¢)
ﬁ, Tg (s,0) = My ] Boo (3.16d)

(3.16e)

Ye (5,0,t) =Yg ts,t)

It is clear that the flame must lie in this
inner region since diffusion is present; the flame boundary

conditions, Eq's. (3.12), become to zeroth order

Yo lsg, 4y, 6) = Yels,, w t)=0 (3.17a)
aLerh + \fa\3 )‘ =0 (3.17b)
9u.); , P u?f)# T continuous (3.17¢)
CUPPHRL TS S ACVES S

The expansion of Eq. (3.12b) is superfluous; ¢v continuous
and Eq. (3.12h) are not shown here because they represent
higher order quantities in [/4Re in the vector relations

used to obtain them.
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To patch the inner and outer expansions in the
leading orders take an outer quantity ?:a)(s)n)t) and
rewrite it in inner variables ﬁfokg‘Whg )t). Then expand
about’ Re = O to obtain as a leading term ;:n%s,o,t)
Similarly, an inner quantity is expanded to obtain F;?%“%tX
This is the classical boundary layer matching procedure.
Therefore, the patching conditions for the boundary
layer are exactly those given in Eq's.(3.11) except for
Eq. (3.11b) which is automatically satisfied to the
leading order in ‘ﬁfﬁ; . Then Eq's,(3.11), (3.15),

(3.16) and (3.17) apparantly specify the boundary layer
problem.

In principle, it is possible to go to higher
orders with this method; that is, corrections may be
obtained to the outer and inner flows and more terms
of the expansion computed. However, for this particular
problem there is a fundamental stumbling block. The
outer inviscid flow being subsonic is elliptic in
nature. For simple geometries the zeroth order solutions
are well known. To solve for the first correction

to this outer flow the boundary layer must be known

over the entire body because of the elliptic nature of

the outer flow. Tor closed bodies such as a sphere the

expansion procedure to be used to gain such a solution



is only asymptotically valid a short distance from
the stagnation point. Also separation will occur. There-
fore, to obtain a reasonable solution to the boundary
layer over the full body is extremely difficult. It
is possible to solve for the effects of longitudinal
and transverse curvature of the body without reference
to the outer flow correction. However, its elliptic
nature comes in when the effect of the boundary layer
displacement on the outer flow is considered. For
some problems this effect may be negligible; however, here
there is a highly blown boundary layer and there is no
right to expect such a simplification.

The other problem, previously mentioned, is
that of obtaining a valid solution over as much of the
leading edge as possible. TheBlasius series (18 ) may
be used; it is an expansion of the solution in powers of s.
However, it probably is only an asymptotic solution, not
/bbnvergent in s. Therefore, for s of (Q[i] or only
approximately 60° from the forward stagnation the
solution probably would become meaningless. This
difficulty could most likely be circumvented by assuming,
say, a parabolic body for which convergent series are
known to result for other problems. At any rate, any of
these techniques would become extremely cumbersome even
in the steady state and a different philosophy has been

adopted. Since it is now established that a boundary
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layer problem exists, the difference between different
regions of the body lie primarily in the chansin~ pressure
gradient. Therefore, two nroblems will be solved; one
will concern a zero steady state pressure sradient (the
flat plate) and the second will concern the nressure

gradient approapriate for stagnation point flow.

Before proceedinc with the solution of this
boundary layer problem the validity of the collapsed

flame zone model will be discuzsed,.

C. Validity of the Collapsed Tlame Zone Assumption in
High Reynolds Kumber Flow.

It is clear that if chenical reaction rates are
not sufficiently fast the reaction zone may occupy a
sienificant portion of tha diffusion zone. If this
occurs the peak temnerature of the systern rmust drop and
tempereture gradients nust decreasc. orealdown of the entire
flame may then occur since the heat transzfer c¢nes roughly
as the peak system temperature but reacticn rates decrease

cal in the

e

exponentially in temperature. This oroblem is crit
region near the starnation noint in high velocity flow where

the fleme is expected to lie closest to the body surface,

p]

v
ol

In fact some experimental results by Spalding (19) show

o

conditions where breakdown occurs at the stacnation point



and the flame moves into the wake, the droplet then
acting as a flameholder,

An analytical bound on the accuracy of this
assumption has been obtained by Brzustowski (20 ) for
the spherically symmetric model., It willbe here extended
for the case of convective burning. It is clear that
conditions on the chemical rates will be more stringent
here since the significant parameter is the ratio of
a nominal reaction zone thickness to the flame standoff
distance from the body. For spherically symmetric
burning r‘:/rj is usually QOUlio]. For a boundary
layer rl/q =1 + ()EUQQQ_) since the boundary layer
thickness is C)[]lyvi&l and the flame must lie within
the boundary layer.

Assume that reaction takes place nominally in
a distance from %f to %4'. Then in order for the
fuel to burn a kinetic expression must hold in this
zone. Assuming a homogeneous gas phase reaction mechanism
applies and again that egual molecular weight among
species prevails the fuel consumption rate per unit area
is

“&4/ EY.
- - T
mp"‘: w;‘ " )S B(T) e :
¢

. . #* . .
where n 1s the overall reaction order, E the activation

n n-1)
S,'# YF Yb Ay#

* .
enersy, and B (1) the pre-exponential frequency



factor. Define appropriate average quantities such that

]
3 g U-n) — - E/R*?: NS Gln-t), ¥ >
mS = We B¥m e A (3/34’ (3.18)

Now the accuracy of the theory is already limited by
the boundary layer assumption to C)[?/JEJcompared to one,
Therefore, in order for the reaction zone thickness not
to appear

g -t ¢ olwae ]
must be imposed. In the leading order for Y; and Y, to
be zero at the flame

Y, Y, ¢ o[V ]

must be imposed. Thisrepresents a deviation from
Brzutowski's treatment. Ilie assumed that Y; and \Q, must
be less than or equal to the square of the small parameter
under the argument that combustion could still take
place in an atmosphere where Y; and Y, were of the
order of the small parameter. It is meintained here that
this is an improper ordering of terms. 3Since the
parameter itself can be made arbitrarily small the accuracy
of the theory merely requires that a proper expansion
would yield these quantities zero in the leading order.
It is believed, therefore, that Brzustowski was unnecessarily

strict.



Putting the inecualities into Ea.

and defining the dimensionless mass flow rate to be

*
m * o¥*
m. = f < = Mg &
Sa0 Yoo Re a3
there results
*(\-h) ¥ —x
A - -e¥/erT 2
m, & ¥ B* e s*" a*" (Re
3

since V; is (jEfVﬁa] in a boundary layer.

i aq —~
be O[/I,IRC] since m_=2 gv and Vv
Therefore, rearranging Eaq. (3.19)
* =
(113) # EX/rt T
2 z Moo €

WF# (1-n) é*

Converting the density to pressure by the perfect gas

law, Eq. (3.20) becomes
E*/RAT*
n+3 * —
Q.*LP*n 2 F?e( 2) w2 e (R*T*
= *
Wc:* U-n) B \,\/F

-l

(3.19)

Now m_must

O [V we]

(3.20)

(3.21)

Eq. (3.21) states the minimum pressure below which the

reaction zone thickness will not be sufficiently small

-t
as measured by the small parameter Re / in relation to

the diffusion zone thickness. Lven in view of the
relaxation of the strict condition of Brzutowski, a
comparison with his result would show the right hand
side of Eq. (3.21) much more strict in the presence

of convection. For example, for n = 2 the effect of



the small parameter is the fifth power for both theories.

But the spherically symmetric theory would also have

the factor (rl*/q*)z on the right hand side. This

is usually O [[10%] . Consequently, the pressure
limitation is increased by C)[w] in the convective theory.
If the strict condition of Brzustowski had been employed

here the pressure limitation would have been increased

by QLo Rg] over his theory.

u 3
cm

g-mole sec

As an example, from Steacie (21) take B =210

for n = 2 and also assume
* -3
/""ac =10 ?o;lc
T#* = 3000 °K
E 3
WF = 30 a,la—mo‘c
E* = 3é K eal /3‘m.\e
RC = S50

Then

o* p* > 0.4 atm-cm
Therefore, for a 100  droplet p’.>7b atm. It is
clear that high pressure combustors are implied for the
collapsed flame model in a convective field This is,
of course, only an extremely rough order of magnitude
estimate. However, it shows that in practical application
the existence of a flame from the forward stagnation point
is open to question unless the pressures are quite high.

From now on it will be assumed that these conditions are



met and that still the pressure is sufficiently far from
the critical pressure of the fuel.

There is an important subtlety in the above
treatment. A calculation of the characteristic chemical

kinetic time in the above example would be for P* = 40 atm,

-~
x ~gt/rET? -
zc‘."’vaB*e P*WJ/R’TVVRC_] ’)\'ﬁ 10 7 sSecc

where 4Re enters since the order of the fuel mass fraction

is }/VRc in the reaction zone, The diffusion time is

for o¥ = 107¢ cm.

X 0. a*’® -s
Lof = ¥ Re x [0 7 sec
2 Re

A comparison of these times does not yield comparable
numbers. Therefore, since this example is known to have
a reasonably thick flame zone from the above theory,

why aren't the times comparable? The reason is that

the velocities of the reactants are extremely high

in the reaction zone. Recall

9F:" VF‘( — mF-l \/
auz ™ gaun, v oLl

But SJF‘“/S);‘ is O L /Are ] in the reaction
zone. Therefore, vp*/ wr is o] whereas

usually it is O[l/fRe 1 . Consequently, even though



chemical times may be short, the reactants are moving
quite rapidly and tend to spread out the reaction zone.

| The above analysis is for the steady state.
In the unsteady state characterized by a circular frequency

it should be clear that the important quantity

concerning the collapsed flame is the product
Therefore, the cycle time can become quite a bit shorter
than the diffusion time and the collapsed flame assumption

will still hold if it holds in the steady state.

D. Construction of the Free Stream Perturbation Functions

A sound wave traveling parallel to the free stream
flow and liquid body axis will be treated. The primary
perturbation quantity will be chosen as the velocity.
Therefore, in the free stream if X is the coordinate
measured longitudinally from the forward stagnation point

v,
of the body, W in Lq. (3.11la) would become

S ,___’“’ ) ‘w [£+ SX(M + OCm?) ]

(3.22)

where the reference quantities are the same as in Section
B. S = + 1 depending on whether the wave is traveling
to the left or right. Since the theory will only be

carried out linearly in € , any wave shape can be made
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by superposition.l

In particular a standing wave pattern
may pe made or a steep front traveling wave such as a
ehock wave followed by a decay can be constructed. It
should be made very clear that what is desired is a periodic
solution, one that neither grows nor decays in time. There-
fore, initial conditions are not prescribed. The
relaxation of actual initial conditions to the periodic
solution should follow somewhat according to f‘:,f._ in order
of magnitude. Also, this is a forced oscillation of a
boundary layer and bears no relation to intrinsic boundary
layer instability as investigated experimentally by Toong (22).

Eq. (3.22) is valid as it stands for a flat plate
where s replaces X since there is no interaction with
the body and the wave. Therefore, for the flat plate the
free stream velocity perturbation is

E(S,aa) = e ¢ wdMs e (wt

(3.23)

For the stagnation point, however, there must be
wave interaction with the body. This wave scattering problem is
solved in Appendix D. The solution of the problem introduces
some further restrictions and gives not only the perturbation
form of the velocity at the stagnation point but the steady

‘state boundary condition on u(s,0), here written in outer

1. It should be clear that this linear analysis excludes the
the important second order phenomenon of "acoustic
streaming" both in the free stream and boundary layer,
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variables. A restriction on the unsteady problem is that
the body is a sphere; this is not necessary for the steady

state since the boundary condition yields

wis,o0) = _';is + O[s3)

(3.24)
which is, of course, the inviscid velocity for a true
axi-symmetric stagnation point in the limit 4 = oo .

The result for the perturbation velocity in the

free stream is

&= %s{li— Zidwm + OC(wm)® + ors=]§e‘“t
(3.25)
‘It is now required that (t&)hﬂ)2 <L [ 3 in view of the
restriction on M2 already made a restriction is therefore
placed on the magnitude of eV . Eq. (3.25) presents a result
which may have been contrary to physical intuition. If
compressibility of the fluid is to be considered Uﬁ*(ﬂ the
quasi-steady velocity perturbation ( W = 3/2 s) does not
hold in the vicinity of the blunt stagnation point. The
wave scattering is important.
Now with the perturbation forms for the velocity
constructed it remains to construct consistent forms for
the state variables. The unsteady Bernoulli Equation may

be employed along the inviscid body streamline.

—¥P - o(V¥? v
$ (Z ) Ve (3.26)
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For the flat plate this becomes in perturbation form at

the edge of the boundary layer

¢wZ+ﬁ3=—F,

(3.27)
Integrating Eq. (3.27)
(3.28)
Since the oscillation is isentropic,
= {wlt+&Ms)
T= [-Smlr-) + omm2l]e e
- (3.29)
~and
- (w (t+SMs)
- ¥=[-sMm +ora)efw(t+
' ? [' ]e ' (3.30)
For the stagnation point
- - g L ewt
= -$M(¥-1)e (3.31)
v {wt
¢=-dMe (3.32)
P= _% e‘wt | | (3.33)

To extract the pressure gradient perturbation for the

stagnation point use Eq's. (3.25), (3.26), and (3.32) to obtain

¥

> __3 . 3 ! /4 iwt
Ps = E3{(‘5+m)— 34M + Lg L&wM(H!-a!ﬂ-).ge (3.34)
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Finally, as previously stated a homocompositional field
is always considered so that ﬁi = 0.

Note, that Eqs. (3.28) and(3.33) state that E;
is O[] which cannot be neglected in Eq. (3.15e).
This term was left out in Illingworth's (23) work on
the unsteady compressible boundary layer. It was
precisely this term which was important in driving
vaporization rate perturbations to infinity as A®@ in
the plane and spherically symmetric models; therefore,
its importance is evident.

Since there are new parameters which enter
the convective theory in the unsteady state it is
desirable to gain an idea of the magnitudes involved.
Consider first the frequency, u)=cu*a?/kﬁi. In a
boundary layer a nominal thickness is (since this is
how the normal coordinate 1is stretched) 5;"‘“ a¥ ~NRe .
Therefore,

wa @b adokat

FUE Ay

X

¥
A8

and W 1is clearly a ratio of a typical diffusion time

transverse to the boundary layer to a cycle time, the

same physical quantity previously encountered in simpler

theories}' Consider the wM product.

wM = w’a'u* a.”*

ThveiE D

1. This is a controversial point in that “%kcls more directly
1nterpreted as a particle transit time, Nevertheless this
interpretation will be adopted because of the behavior in
the high frequency limit of a short diffusion penetration
canpared to the boundary layer thickness.



where L¥ is the wavelength of the free stream disturbance.
Therefore, wM of 0 [M] implies the droplet size of 0 [Mﬂj L
Note that if pressure had been referred to its
steady state value rather than the dynamic head its order
would have been M compared to 1 in the unsteady state
while the velocity perturbation is O [l] . Therefore,
the effect of the velocity oscillations, neglected in the
simpler theories, can be expected to be quite important.
The reason for this strange ordering is that in the unsteady
state the velocities must propagate at primarily the
sound velocity rather than the free stream velocity if M
is low. Thus, in the unsteady state from the standpoint of
the boundary layer velocity perturbations are raised by an
order of magnitude of 1/M compared to what may have been
intuitively believed.
Now attention will be turned to the solution
of the unsteady boundary layer problem. Eq's. (3.15),
(3.16), (3.17), (3.23), (3.25), and (3.28)-(3.33) are
assumed to specify well-posed problems for both the stag-
nation point and flat plate. The steady state will be
treated in the remainder of this chapter; the periodic

solutions will occupy Chapter IV.

1. TFor the flat plate, of course, "droplet size" must be
interpreted as distance from the leading edge.
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E. The Flat Plate - Steady State

As is usually the case it would appear that the
flat plate case is the easiest to solve. It will be
seen, however, that extreme difficulties arise in the
unsteady case. In fact, the stagnation point being more
difficult in the steady state becomes markedly less
complex than the flat plate in the perturbed problem.

The time dependence will be carried through the
development of the steady state equations so that
indepehdent development will not have to be made. To
obtain the flat plate case from Eq's. (3.15) either
set ‘$ = 1 and Y = constant or take the two-dimensional
case 5 = 0. Then the governing equations under
previous assumptions are

go v (o), +(9V)‘J=O (3.35a)

?[u't+ U.LLS"PVLL?] = (/uuj)a/— Ps (3.35b)
[T +uTy + vT 1= (st 3)3+M1(3’-») Py (3.35¢)
?[th +u e, + VYKﬁ]z é;_ { o YK?f)?’ (3.35d)

. A = Pr = .
It will be assumed that w = Sc¢ =FFMr = | . Introducing

a stream function, % , and the Howarth-Moore unsteady transform



Ao §lsty by

' - (3.36a)
Ke=S ' ' —(3.\:36b)
z =t (3.36¢)
w= ¥ (3.36d)
v =—--‘§(‘Ps + A, ' (3.36e)

continuity, Eq. (3.35a), is identically satisfied.

Eq's. (3.35b)-(3.35d) become

A + ~ Sﬂ" - “@ -P c
D¢ Viu Zx " Y Fea = _S).ifYMPV,Z/?A(s.a'/a)

2 2y o2 = P Tan
(ét 5[J/’ 5x ~ EA)T,& = yMp Top
- + MAGmy o (3.37D)
Q t
> 2 . 2 *
(St * 9/;‘2 = % 3;1) YK,‘: = ¥Mp YK/:/{“, (3.37c)

Basically following the methodology and nomenclature of
Lam and Rott (24) and introducing the usual boundary layer

variables,

7 =

A
/A-
L X X + o=

Yax (3.38)

and the following perturbation forms
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¥ =425 [F(7) + € Plyx) e @(ETSMs)y ‘
(3.3%a)

_ == (w (t + $Ms)
T= T e e (3.39b)

\1 _ §ﬂ<(ﬁ) + £ %6{(?)x)€:£a1(f-+éﬁ4s)

(3.39¢)
the steady state set of equations is first obtained from

Eq's. (3.37)

FrFF'=0

(3.40a)
= // =1 _
T +F7T =0 (3.40b)
Yo '+ F Y =0 (3.40¢)
Further introducing the unsteady variables
77 §= twX t>1 (3.41)

the perturbation set of equations valid to first order

(or linear) in £ are obtained from Eq's. (3.37) and (3.39)
P, +FP

7 _ / y
ZCARRF AR A PR
-2F[F'P,~F"Plsm -2¢P, =
”? (3.42a)
-2E(I+SM)T + ¥YdMF
971+F27 2€F v 2;(l+3mr:)]g—
~PT 1+ 26SM) - 2{%’?1"
Y (3.42b)
+ ¥SMT+ 28 SM(y-1)T

~PY U+2F3M) —2F R Y, + ML

3([3fal=

(3.42c)
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The bar superscript on steady state quantities has been
deleted from the previous equations. The surface

boundary conditions, Eq's. (3.1l6a), become in the steady

state
F (o) =0 (3.43a)
T(o) =2 (3.43b)
Y o) = - Fo) (Y -1) (3.43¢)
T’(o):—F(O)/Bd, (3.434d)
Y (0) = YFW (3.43e)

where it is clear that the mass flow at the surface 1is,

from Eq's. (3.36), (3.36), and (3.39a),
V(o) = - ¥ (0,s)= - Flol/fzx = m, (3.44)

Therefore, the similar solutions in the variable aJ

will require a vaporization rate decreasing as l/%/ .

The flame conditions, Eq's. (3.17), become

YO(7f):YF(7{)=O (3.45a)
. { t

yYe () + Yo (y)=0 (3.45b)
F) F: F /)’ T continvous ot 7{: (3.45¢c)

g /
TI(’?;') - T (7;“’) +%,\(r,- ('7;)20 (3.u5d) 1
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A 4+
S A Lo N og
Z ﬁ;; T vm, o% g 5g 0y ) Ay (3.46)

The conditions in the free stream are obtained

from Eq's. (3.11)

F '(e0) = | (3.47a)
T (o) =) (3.47Db)
Yoloo)= Yo, (3.47¢)

Consider the solution of this set. The
momentum equation, Eq. (3.40a), is the familiar Blasius
equation and is uncoupnled from the enerey and species
continuity equations except for the boundary conditions.
For any value of the blowing parameter, F(0), the solution
is unique and was obtained by Schlicting and Bussmann (25 )
long ago. A complication enters here because the
blowing parameter is coupled with the other two equations
by the surface transfer conditions. For pure vaporization
work has been done by Snalding (26 ) concerning this
problem. The new steady state modification, to the best
of the author's knowledge, is the existence of a collapsed
flame in this problem. At any rate, the problem is
overdetermined as it stands; 7T , \}v’, and B, cannot
all be assigned independently at the surface. There are
eight boundary conditions for a seventh order system,

otherwise. Note also, \g/} is the actual variable of
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interest if it is ﬁéw which is specified at infinity.
Eq's. (3.45a), (S.Mgb), (3.47c) jand (3.40c) are unaffected
by this simplification.

As is well known, |= o.NFli- b, and YK=CKF'+A;\
are integrals of Eq's. (3.40b and c) (the Prandtl integral)
or that | = a*\%‘*gn is an integral of Eq. (3.40b).

It is a simple matter to determine the a's, b's, c¢'s and
d's through the boundary conditions, Eq's. (3.43), (3.45),

and (3.47). Specifically,

A, = T«E"_‘ by= T, + Yew § (7,-)
Fl - Yoo

Ce = YeulF} -

Co = Yan/("F_f‘} d°= -&'YFW
(>-T¢) /Ye,, b= T,

Qo= (- T3) /Yo b,= T,

Therefore, application of Eq's. (3.45b and d), and (3.43c and d)
together with Eq's. (3.48) yields the following important
relationships:

Ye [l1-Ye ) = B, (T -72)
P Fw) © o f (3.49a)

Te= (v g¥em v 2 Yoo )[4y You |

¢
! JYFW j Yeu (3.49Db)



- 79 =

Yy, /(- ey ) =~ Flo) Fét/F“(o) (3.49¢)
. C

t ro_ ,
(-7 )/Ff Youe /3 e (3.494)

Eq's. (3.49a and b) together with the equilibrium saturated
vapor line relation for the fuel define the wet bulb
temperature of the droplet and the flame temperature.

They are identical in form to Eq's. (1.25a and b) and are

not restricted to flat plate flow. They take care of the

redundant boundary condition mentioned above and specify
conditions necessary for a steady state. These relations
occur for any flow in which heat and mass transfer are
similar (Pr = Sc¢) and will occur in any boundary layer

flow under this restriction. Eq's. (3.43c and d) are peculiar

to this problem since they rely on the integrals of T and
Vi< as linear functions of F'. Note then that F" (0)/F(0)
and F' are functions only of the two parameters \gcc /3 and
\(g,w . In fact, the momentum equation can be solved

by specification of these two quantities alone; they fix
the value of the blowing parameter F(0). Note that when

Y

Fw = 1, separation occurs. Therefore, the assumption
often made in the literature that the liquid temperature

is the saturated temperature for the total pressure of

the gas leads to an inconsistency in this respect. Note,

furthermore, that a most interesting quantity is the mass

burning rate at the flame which by Eaq. (3.12c) and
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tracing through all the transformations is

/
m = - = Y F,
Al2x Mg, = Ye (%4)_ Fw s (3.50)
F, -

which is also specified by only the two parameters Ye, and

Yoo / }A . Therefore, without knowing the details of

the complete temperature and mass fraction fields a great
deal of information may still be extracted. The pure
vaporization 1limit is taken as ’%%Q/i—* O . The Blasius
results are obtained as Y and Yg,.,o but maintaining
Yoo/} Yew finite. ¢

| Desirous of obtaining solutions for many values
of the parameters and because of the need of the steady
solution for the unsteady integration, the Blasius
equation, Eq. (3.40a), subject to Eq's. (3.43a), (3.47a),
and (3.49 cand d) has been numerically integrated. For
an initial guessed F"(0) the equation is integrated
out to %7 = 8.5 by a Milne variable step size technique
contained in a package subroutine available for the
IBM 7090 computing machine (27). The value of F' (o9)
is compared with 1 and the initial values are assumed
linear in the final values; Newton's method is used to
guess new initial values and eventually converge.
Convergence is quite rabid for the Blasius equation since,
as is well known, this equation behaves well about 7= &
All numbers are believed accurate to at least .005%.
The results are presented in Table 2 and Figures 7 and 8.

Quantities at the boundaries have been considered more

important than detailed profiles. Therefore, only in
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Figure 8 are samples given of actual profiles.

There are several interesting points to note
on Figure 7. First, the mass burning rate is usually
of the order of one half of the vaporization rate, at
least for large 'ﬂxvand moderate \@nli. Therefore,
approximately half of the vaporized mass is convected
downstream rather than burned. Secondly, as expected,
an increase in jé, moves the flame position toward
the liquid surfaée and captures more of the vaporized
Imass at the burning surface. Therefore, just as in
spherically symmetric theory, Yﬁw has a weak effect
on the vaporization rate for fixed Y%w but here it has
an extremely strong effect on how much is locally
burned rather than convected downstream, Third, a
change in Yg for fixed %%/j has a marked effect on
F(0) but almost no effect on ﬁFf especially at high \%vv
This is because of the opposing effect that a high
surface rate and high YFw "blow" the flame out to a
larger a; , thereby capturing less of the vaporized
mass. Finally, note that F"(0) is a unique curve,
independent of ‘ﬁw and %h[}. This is obvious, since
the Blasius equation will'only admit one solution for
each F(0).

Finally, in order to fix an idea concerning

correspondence of this convective theory and the old
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spherically symmetric convective theory note the definition

*
=2V L yre 8791 | o (g;*v*od)
Sov UL g UX  VRe \VTTLCE (3.51)

The last grouping 1is the non-dimensional mass flow of
the simpler theories. Since m is 0[1] here, the mass
flow referenced to (4% /a*| is proportional to 4Re as,
of course, is known for heat transfer in laminar flow.
Comparing with the correlation, Eq. (1.27), it is seen that
here for Re = O there is no vaporization while
there was for spherically symmetric burning. This is a
fault of the asymptotic procedure being used since errors
are being made of CD[‘QQ;] compared to 0[1] ; this

error becomes infinite as Re—~>0. The above comments

are not, of course, restricted to the flat plate.

F. The Stagnation Point - Steady State
At the stagnation point r = s where, at least
for a sphere, the error made is O(s*]. TFor §==| the

governing equations from Eq's. (3.35) are
g, s r(sgwl)s + (Sév)gzo (3.52a)
o [U*t + u.uu$+vuua,._\ = (/L& U~~3)»a, - Ps (3.52b)

9["‘1 rulg VT3] = L (/*Tg)?f‘ M* (v-1) Py (3.52¢)
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9[th +bLYKS +VYK3-] = —S— (/-LYK‘U)% (3.524d)
Again it will be assumed that b =Sc=Pr =], First

using the Mangler transform

T=sy
2 = ogsslds = s3/3
2=t
u =
e0=<lov + $gu)
(3.53)
Eq's. (3.52) become
O2 /g2 Hgw), +(gV)g =0 (3.58a)

“ P
0 [T—;‘l + Wz ¢ vT;l: (mTe)e + M () - (3.54D)

?[l:'“g'l; + uu,; + OuF]—_—. (/u.bkF)F - P (3.54c)
Y . 3 |
?[—_g:+uYK2+VYK?]‘(/“YK¢\F (3.54a)
Then using a modified Howarth-Moore transform
N ¥
A= [ gdr
[o]
X =2
¢ =2
w= ¥a
A | A
Vv = __9(w2 ¥ /:“%_1;) | (3.55)
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Eq's. (3.54) become

4—Px

(3.56a)
T
—S“;+¢/1TK—L/)XT/‘2_X

ol L+ Yo P Bag |- g (on P22)a

M P T/E/a ¥ M (r-1) Pt

9 s? (3.56b)
T + Y2 Y, W Yo = YMPR Y,
5 N X WA P in g (3.56¢)
Then introducing the boundary layer variables
3 A
7= 3 5 X—> X >t (
3.57)
and the following perturbation forms
- /s Cwt
Woxt) =(3x) T [F(n) + € Plo) e ¥ )
(3.58a)
T(7¢) = T(7)+ ¢ U‘(a)c"“t
) (3.58b)
_ twt
Y (7,t) = Yo (n) r € Y] e (3.58¢)
the steady state set is first obtained from Eq's. (3.56).
/7
F™4 iFF”*’?‘-(’F-F‘z)=o
3 3 (3.59a)
' =1
+ 4 =
T. 2 T © (3.59b)

L v !
Yo *+ 3 FYe=0 (3.59¢)
Noting that, miraculously, a set of ordinary differential

equations is obtained for the perturbation set, there
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results / /

P’“*% FP""'%F,p +%PF”— g ‘:w p = YSMF”'

- w - N T ‘
FiT3+iw +3(r-)sM]+ 30 + 12 cwdmT (14435 c0a)

do.-:A—z— '.'.‘.l,.. ! - - —
o)=L +3F %cw]U %PT'

A 72 d% 7
3 SMiw (r-) T+ yemT " (3.60b)
A WYe)= ~1PY +Yem Y (3.60¢)

The last term in brackets in Eq. (3.60a) is the
perturbation in (Pc/@) and is readily obtained from
Eq's. (3.34) and(3.31) since Fs= —%s,

Again tracing through the transformations,
Eq's. (3.57), (3.55), and (3.53), the surface boundary

conditions in the steady state are obtained from Eq's.

(3.16a).
Fltoy=0
(3.61a)
T(O)"—' ¢ (3.61b)
Ye(o)= Yg (3.61c)
Ye'o)y= £ F(o) (I- Ye,) (3.61d)
TC0)= - 1 F() /B, (3.61e)

In this problem numerical factors somewhat cloud the

picture. The surface mass flow is, from the transformation
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equations

r'ﬁw=g‘0\w= 5§c)w="5‘2’;(°,5)="2l:"(°) (3.62)

which is independent of x. The flame and infinity boundary

conditions are given by Eq's (3.45) and (3.47). The flame

position is given from Eq's. (3.57), (3.53), and (3.55).

i?' s 3 4224 3 ‘tf ‘

¢ 2 B = E,S ¢ dy (3.63)

which is, in general, a function of s.l ’

The solution of the steady state set, Eq's. (3.59)]
subject to Eq's. (3.61), (3.45), and (3.47), is not as
simple as for the flat plate due to the fact that the
energy and momentum equations are coupled because of the non-
zero pressure gradient. Therefore, at least one immediate
integral is lost. The analytic information lost is that
equivalent to Eq's. (3.49c and d) in the flat plate case.
However, once again heat and mass transfer are similar from
Eq's. (3.59b and c¢), and, as previously mentioned, Eq's. (3.58
and b), still hold since V= &‘RYK ng where SK and gK
are determined in Eq's. (3.u48).

Two pieces of information have been lost since

the integral of a second order equation has been lost.

These are F"(0) = ;'[YFW )Yom/)- ’F(o)} and F;: -F[\(Fw'\(o‘./j‘]'

1. However, it is not here. In fact, although disguised by
the many transformations, all state variables and v are
functions of y alone to 0[$2]. This is expected from well
known stagnatlon p01nt solutions. The fact that ordinary
differential equations result for the unsteady case comes
from this property, although there is no a priori know-
ledge that this should be so.



They are replaced by the specification of two additional
parameters, here taken as  and Y - However, because
of the nature of the lost information the numerical
integration becomes more difficult; an iteration must
be carried out for both F(0) and F"(0). In this problem
the mass burning rate at the flame is given by
e = -35/(5)=-3 1 (%)
t ¢ F Y 2 g " (3.64)
It should again be pointed out that no longer
is the solution of the momentum equation independent
of the energy equation, therefore, the presence of the
heat source alters the velocity profile. As such it is
definitely impossible to obtain the solution from previous
work on the compressible boundary layer with blowing,
Reshotko's (28 ) work, for example. The limit of pure
vaporization is still Ye,., -» 0. But to obtain standard
blown incompressible boundary layer results it is now
necessary to also pass ¢-» | . To obtain non-blown,
incompressible theory (Homann flow) %—DO and YFW-"O
with ka}J\ép finite. Once again separation occurs when
‘(F“'= | since an infinite evaporation rate is implied.
The numerical ihtegration proceeds as for the
flat plate except that now a two-fold iteration takes
place, F(0) and F"(0) vs F'(e©) and T(eo). Again the

initial values are assumed linear in the final values for
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the iteration procedure. There is more difficulty in
convergence here, since, as is well known, this set of
equations contains one solution about infinity which blows
up powerly in 77 . The initial values guessed must be
"sufficiently" close to the final values for convergence
to be obtained. If it was obtained,only a maximum of

five iterations were necessary for convergence within
.00001 of the final values.

The results are shown in Table 3 and Figures 9-11.
Figure 11 is the only detailed profile calculation
presented since the primary interest is in the quantities
at the boundaries, to prevent a further iteration in the
time dependent case. This particular figure shows the
interesting phenomenon of the velocity overshoot near the
heat source due to the pressure gradient acting on a
fluid of low density (higﬁ temperature).

Fixing @& and 1&, Figure 9 should be compared
with Figure 7 for the flat plate. The conclusions are
similar to those of the flat plate. The primary differences
are the fact that %2 is smaller at a comparable Reynolds
number since, obviously, the boundary layer thickness
is smaller. Then note that F"(0) is no longer a unique
curve with F(0) since it now depends on the temperature
field which is influenced by Y%l}' and YFW . A

surprizing result is that, for fixed ‘fFv', F"(0) increases
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with F(0) whereas normally the higher the blowing parameter
the less the skin friction. This is due to the strong
effect that \gbolj has on increasing 'T; and

decreasing ﬁ# so that the velocity overshoot is greater
and moved closer to the body thereby increasing the

velocity gradient. Extremely strange behavior is exhibited
at sufficiently low \%w where for fixed ‘Q%.[§ s F"(0)

vs F(0) undergoes a maximum (see Table 3). Finally

note, with the use of Eq. (3.64), that approximately
one-half of the vaporized mass is again convected downstream
rather than burned. However, more is captured for a
comparable case than for the flat plate. Figure 10

shows the effect of the two additional parameters, %_and T,
The results are somewhat obvious on physical grounds

except that the dependences are quite weak. The

exception is F"(0) vs T ,the strong dependence of

A
which occurs through the viscosity law, W= 1.

G. Summary
A formulation of the droplet burning problem
in a high Reynolds number flow has been given. Treat-
ment of the Prandtl boundary layer results as a
natural consequence of an appropriate asymptotic expansion

of the full Navier-Stokes equation. Difficulties in
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obtaining a solution over the entire droplet have been
indicated; the decision to treat two typical boundary
layer cases was made. An investigation of the collapsed
flame zone assumption in a high Reynolds number flow

has been made; the results show that the existence of
such a flame is marginal for normal pressures. The
formulation for the perturbation problem for the stagnation
point and flat plate has been presented. Finally, the
steady state solution to these two problems has been
obtained. Some of the results of the simpler theories
of burning have been shown to carry over into the
convective case. However, one of the most important
resultsrhas been shown to be the fact that much of the
vaporized mass is convected into the wake rather than

burned in a diffusion flame surrounding the droplet.
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CHAPTER IV

PERIODIC SOLUTIONS TO THE CONVECTIVE DROPLET BURNING PROBLEM -

A. The Boundary Conditions

Immediately upon moving to the solution of
Eq's. (3.42) and (3.60) an important subtlety should be
noted. From Eq's. (3.38) and (3.36a) note that the
boundary lé.yer variable % is a time dependent variable
with a steady state component énd a perturbed component,

7= X vER

This occurs since @ contains such components. Therefore,
F(%), T(% ), and Yk(?) are not truly steady state
unless % = % . Something has been left out in the
constructioﬁ of Eq's. (3.40), (3.42), (3.59), and (3.60),
the perturbation in 97 . This distinction was omitted
in Illingworth's work (23) but made no consequence
in the results. It will be important here because of the
existence of a boundary condition in the interior of
the boundary layer (the flame). To take care of this
difficulty two approaches can be taken. The first would
be to actually consider perturbations in the independent
variable, and the steady state equations, Eq's. (3.40) and
(3.59), would be correct for F(77), T(’(), Y'k(’( ).
However the perturbation equations, Eq's. (3.42), are

then incorrect since no terms appear to account for
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%? . The second procedure, and the one that will be
adopted is to analytically continue any quantity ¥F(27)

— — [ -
into the complex #%-plane as 7(’() =F(% )+ &? Fl).

Then the total quantity of interest is

F(z)= TR +e[F)+ ¥ FH]+ ole?)

As long as the continuation is valid the solution of
Eq's (3.40) and (3.59) will yield F(¥ ) and 3{5).
In this case the perturbation equations, Eq's. (3.42) and
(3.60) are correct. The two procedures must be equivalent
to first order in € .

Then consider the evaluation of any quantity

¥ at the flame. At a fixed % position

F05 Tlseai0,00 t) = F (%, %059) ve[ Fiy, R, ?#)f?'!)r-]

= F(F )+ €] 230 Flg + Fix, 7,0
) &> ! =
+ e F g ) R
Therefore, define

7= 740 s %’;){

(4.1)

and
3, %,0) = Hz)r e[7, T g+ Fg 4]

+ o[e*]



- 93 -

i;- is the true perturbation in the flame position in

7 - space, accounting for movement of the upper limit

of integration and the changing integrand in Eq. (3.36a)
Then ¥ evaluated at the flame consists of a steady state
part plus a perturbation quantityi?;ﬂus a continued part
of the steady state term, but here continued to the

true flame position. Normally, for any other position
within the layer the term involving g# would not appear
in Eq. (3.51). Now the flame boundary conditions,

Eq's. (3.17), may be cast in perturbation form

yo-t- %—Y.o,=?'F +$ r_f:o
o 7&"0 +j’1/'= =0 - (4.2a)

7°7+ ) y”7=° (4.2b)

U-(’?;“) - 0"'(7;"") +"6-71F=o (4.2c)
0’7(7‘;-} - 07;“6:"" ey ?F;O (4.2d)
Eq's,.(3.42a) and (3.60a) (4.2e)

continuous across the flame

where use has been made of the steady state boundary

conditions, Eq's. (3.45). Condition (4.2e) requires also
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that P? and P7F are continuous across the flame
which would follow from a higher order investigation of
Eq's. (3.124d and f).

The surface conditions, Eq's. (3.16), become

P’?(;’O)zo (4.3a)
T(%,00=0 (4.3b)
¥=e(t,0) = Ye LE) (4.3¢)

- Flo) . L
PAUOEERSLLY) ‘Ba.Y_(Hzf&M)PQng]w (4.30)

geol€0)= rsme)(i-¥e, ) - Ye., Flo)

(4,3e)
*l-ve, )0 258mVP v 2F P ]

for the flat plate. For the stagnation point Eq's. (3.53d

and e) are replaced by the following:

oto) = -4 rdm Bl _y Plo)
{ Ple

4,3f
Boo o ( ‘

1a,_.’Co) = £ 0-Ye, ) [FSMF(0) +P(0)] - 4 Yol F (o) (3,

In Eq's. (4.3d and g) the first term is due to the

perturbation in the @am product. It therefore accounts

in part for compression and heating of the boundary layer.
The conditions at infinity become from Eq's.

(3.22), (3.28), and (3.11f) for both the stagnation

point and flat plate
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P"’(F’w) - (4.4a)
O (§,0) = = $M (r-1) (4.45)
vo (Fl"") =0 (4.4c)

B. The Flat Plate - Low Frequency

Lam and Rott ( 24 ) have shown that for the
incompressible problem an expansion of the solution in
powers of (2¢§) is a convergent one although, of course, ?
not practically useful for high frequency. Convergence
has not been investigated nor will be claimed here.
However, such an expansion will be attempted and will
at least provide asymptotic information for low

frequency. Therefore, assume

P= % (2¢) 4" (%)
n=o

o= 2 (28)" 4£™(2)

nso

(m
Y = f_(ZF)h A (%) (4.5)
n=o _
Substituting Eq's{L4.5) into Eq's. (3.42) and collecting

like powers of frequency

OLCE¢)°])
"

g "4 F gt ¢ B4 2 pgmE

1
(4,6a)

] _ 4> d o) _ _ ’
& L4 - d?‘+FT’(]J‘ - 3(~T+r‘g,m‘r"(u.sb)

©71_ _ 49 ! "
< TA] - g Yk ¥ TEM Yy (4.6¢)



- 96 -

ole)']
c}"’ e F a,‘" “\ 3F "8(')-2 a""—"- ~0+éM )T
+ 1co;l+ SM[F'3‘°"- Flla(o) ] (4.7a)
A LA = 2 LY 4 (1asm) L M(r-)T
-3 7‘"1‘ SM 3(a) T (4.7b)
<, [R] —ZF'JQ:‘.') = (1+ M) RSV -3 ea.‘" Y
~SM gl Y' (4,7¢)
Of(ze)"] ; n22 o
(n-s)'

g™ e F gt “2n 3(""F' +2n g™ Fla g
M [Fla_(n-l)‘_ (n-i) F"J (4,.8a)

A AT =20 F R 2 (14 SMF )R- (200) g T
~ &M %cn~‘)T‘ (4,8b)

ZTRDI-2nF'RM = (14 smE ) RS- @nsi)g™Y

(n-n .8c)
"JMa- YK

The boundary conditions, Eq's. (4.2)-(4.4), can be

similarly expanded. At first, a troublesome point looks
evident, that is, the arbitrariness of <& ™M . Both the

sign and magnitude depend upon the particular problem

of intergst. This term appears due to the travelling

nature of the wave and therefore through the pressure, pressure
gradient, and associated state variables under oscillation.
Since these terms would not appear for an incompressible

fluid, M = 0, they will be called terms due to a "pressure
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effect"., The remaining terms would still appear for an
incompressible fluid and will be called terms due to a

o1t is possible, since these terms

"velocity effect".
only appear in the inhomogeneous parts of Eq's. (3.56)-
(3.58) and, what is equivalent, in the boundary conditions,

to separate the two effects by assuming

Jal] (n) n)

% =%(°)+SM%(‘,
J-.(h): —A(h, éMJ,(n,

(W)

(n) (n) {n)
1% = h
) +IM Ry () (4,9)

The problem may then be solved for arbitrary <&M.

Consider the problems one at a time. The

differential equations for the t‘;’, problem are
e i
(o) (o, (o)
Loy +F 'a' ¥ k % o)
(o) - _ (9,
w) = ‘3(0;

)] = (o) i
X&[)‘?N (o)] ? €. Y‘T
with the boundary conditions from Eq's. (4.3)
% Lo' (O) =0
0} ~
A (0 &0 = ©

(o)
F o= ke,

(ol’ (o)
J] (o) (ol = -~ a.(” /Boo

hFc:'a)(o,- h‘__ <°) , F(o) + (1= Yg )%w

1. The naming of these effects also stems from their properties
explained at the bottom of p. 138.
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From Eq's. (4.%)
Q)
%ﬁﬂ (o0) = |

Ho (o) =0

Ro'oy(oe) = ©
and conditions at the flame stand as in Eq's. (4.2) if

quantities are replaced by the quantities. This 1is
nothing but the quasi-steady velocity problem for which

the following solution is easily constructed:
(o) !
G = IXF

2
'A(’) = a F"q
<o) K

k (o) _ c F'”’( (4.10)
K co) I 2

The a's and c¢'s are defined in Eq's (3.48). This

. . . o, - €o) .
solution satisfies the condition k = @ . This

FWco)

solution is clear since all that is being perturbed is
the free stream velocity in the Reynolds number, Since
the steady state mass flow is proportional to “fRe
a perturbation should yield %,EZ’) (o) = F'(O)/ Z ,
which it does. Nothing else is disturbed in the field,
the boundary layer thickness just oscillates.

However, the quasi-steady pressure effect is
more difficult since compression of the layer is occuring
and complex boundary conditions occur. Using Eq's.
(4.9), (4.6), (4.3),and (4.4) the i?; problem is
specified by

(o) m (o) a4 (o)

"
- mn
) +F?“' tF ?f"' =¥F (4.11a)
. a
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(o)
K LAu]=-ay ‘}(:.))F”«i- Va,F"

(o) - : (o) i m
7‘{1[ N(\,]‘-ch ?(',F +YCKF

under the boundary conditions
Coy /

%(‘) (o) =0
A ‘(':', (o) =0

(o) - (o)
Re(h0r= Yg, ()

(ox/ - (o
'A‘” (o) = ————HE:) - a(l; /Boo

4
(o) (o
R g )= ¥FOI1-Ye, ) - 4 FOO) +(1-v,) G

(ol(
am (=) =0

A el = -7

R, (e0) =0

o (v)

(o}

and Eq's, (4,2) written for the ) components. Because

of the surface mass transfer no simple solution can be

(U.lll?)
(4.11c)
(4,12a)
(4.12b)
(4.12c)
(4,12d)
(4,12e)
(4,121)
(4.12¢)

(4.12h)

constructed from the steady state solution as was the case

for the quasi-steady velocity effect. A machine integration is

required. Here a three-fold iteration is required for the

s ol ¥ ()
quantities y"'w a9 ?(_0 (e, and ¢ (o)

as funetions of Eq's. (4.12g and h). The same type of
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iteration technique was used as for the steady state; it
was also used in allcalculations to follow.l The
integration procedure has switched, however, to a RungefKutta
technique using the same package routine (27 ) as before.
This switch was made for all time-dependent calculations
to save computing time during the initial iteration
steps partly due to the fact that all time-dependent
momentum equations have one unstable solution about ?h:cu
The interval size used was 0.01 and now the error is more
or less on an absolute basis rather than percentage-wise,
This error is estimated from the difference in the steady
state quantities based on the previous procedﬁre, since
they were also integrated along with the unsteady quantities
to avoid reading in a table of values. 7A11 time dependent
quantities are believed accurate to .0001.

The additional parameters which must be
specified for the problem are 2, %&, and ¥, since integral
information is not available. Note that B is the
actual variable of interest and that j %oes not have
to be independently specified. This can be seen from
Eq's. (4.11c), (4,12h), (3.48), and (4.2a and b). A quantity
of extreme interest is the perturbation in mass burning
rate at the flame. Expanding as in Eq. (4.5) and

2
evaluating the perturbation from of Eq. (3.15h) at the flame,

l. This iteration is, however, exact since due to the linearity
of the equations the final values are linear in the initial
values,

2. All quantities of this kind are perturbation quantities
divided by & and, hence, finite, :
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_ﬁ MF‘_ = —1}—- Z(‘ZF) [NF + SMM (t)] [%F Y‘MYF]fu 13)-

%i has a similar expansion and is evaluated from Eq. (4.2a).
The 42x dependence is extracted by dividing by the steady
mass burning rate in Eq. (3.50). éuch normalized quantities have
much more physical meaning than the absolute number, anyway.
Note from Eq. (4.13) the three components making up this
perturbation. One is due to the perturbed mass fraction gradient,
one is due to the flame movement "sweeping out" the steady state
field, and the third is due to compression and heating of the
boundary layer changing the "steady state" gradients and trans-
port properties. The results for the quasi-steady pressure
effect are shown in Figures 12-14, 1In viewing these figures
the following points should be borne in mind:
1., Except for %((':; y & negative quantity means
an increase in phase with a pressure increase}
2. a.:?; >0 signifies a vaporization rate
increase in phase with a pressure increase.
Figure 12 shows the dependence on the parameters of interest in
the steady state, YFw and Yo“’/j - The following conclusions
can be drawn}
l. As expected, when the vaporization rate increases,
the shear stress decreases,
2. In analogy to the plane case of Chapter 2

%(\ (o) and %m(o)/ﬁ; FTY increase

for higher steady state mass flows only in

1. This is a result of the form of Eq's. (3.28) and (3.33).
2. This is a consequence of Eq. (3.36e),
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the curve vs YFw l.
(e)

3. The small values of %&%vu,again insure
that O” (0)a2 0 is a reasonable assumption.
(o)
F¢ )
with increasing steady state vaporization and

4, /RF; is a decreasing function

burning rates.

Co)

W primarily determine the

5, The trends of 5‘2;
trends of MF“::/ﬁp‘ showing the extreme
importance of flame movement.

6. The quasi-steady vaporization and burning rate
perturbations are much higher than for the
plane model due to interaction with the convective
field. In fact, they are 0 [[ 1} rather than
0oLy -1 , in general.

7. All quantities except the shear. stress increase
in phase with the pressure.

The primary conclusion to be drawn from Figures 13

and 14 is that dependences on the additional parameters TT
and P are weak especially for usual values of these parameters
( % > 6 )

however, as will be shown later through high frequency analyses

2 <€ 0.5 ). The dependence on [V is strong,

and for the stagnation point.

1 The normalized function 3.(:.’, (o) [Arw VxR is not
shown but can be readily calculated from Table 2.
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Once again, for clarity, the analogous functions
for the quasi-steady velocity effect may be computed from

Eq's. (4.10) and are presented here

3o (0) = F(0) /2

(o) .
F‘F(” /m l2.

3533 (0) = § F'o)

(o)

T = -7 12

? “’ (4.14)

All are effects in phase with the velocity.

The problem for first order in 2§ 1is now

()
(o)

that for the velocity effect. The reason is that the

attacked. However, only the problem will be solved -
primary interest is in the magnitudes in phase with

the pressure. Because the expansion parameter is (wX
any quantity of first order concerning the pressure effect
must necessarily be 90° out of phase with the pressure.
For a travelling wave tﬁis is also true with the velocity
efféct, but recall that a standing wave can be constructed
from two of the travelling waves being considered. Since
a standing wave is characterized by a 90° phase shift
;between the velocity and pressure, any quantity which is
90° out of phase with the velocity is of interest, This

result which can be directly seen from the expansion
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procedure is true for all boundary layer work along
this line: Unsteady pressure effects in phase with the
pressure do not become important until Oszj.

The }2) problem is specified by Eq's. (4.7),

(4.9), (4.3),and (4.4) to be

) w_, "o /
+ F -2 +3F = =T 4+4©
( o)
#co ¢ d , 1 f (4.15a)
A[AO T~ 2640 = 45, =3 450 T
LA 0 ] = 2FH co) § (4.15b)
(] I TN / Q) ) ) !
X‘[‘A" ) 2F k"‘(o) = AK o) 3 T Yic (4.15¢)
under the boundary conditions
/
(
g (0 () =0
4 =0
" "
Re (o ® = 7Fw ()
w/, 2 ()
'Am (0) = 33'(0)(0) /Bon
w’ ) _ )
Regy @) = = 4, ) FG) +30-Yeu] 15 (
0/
?to’, (e0) = 0
AU (e0) =0
) (4.16)
* 1€ (@)50
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and the flame conditions, Eq's. (4.2). Again, and it is
true for all orders of the velocity expansion, an integral
of Eq. (u4.1l5a) is
252 M
o) = %k K (9) _
and 7ﬁ:%¢)is implied. Therefore, the numerical integration
(o)
of this problem merely requires an iteration for the
two quantities u)(o) and ) ”}o The
Tt tw ) -
previously outlined numerical techniques were used and
the results are presented in Figures1l5 and 16.

Recall that, of necessity from the expansion
procedure, any quantity is 90° out of phase with the
velocity.1 It is perhaps best to construct a standing
wave at this point and consider components in phase with
the pressure. If in Eq. (3.22) dJ&=-] and another
perturbaion with &a )} 1is subtracted there results a
standing wave of the form

N . cwt

LWL = e (WX M) e

and

f?"dt. m(wMi’)e‘wt
)
(o)

it is in phase with the pressure on the left hand side of

Therefore, for the problem if a quantity is positive
the pressure node and vice versa. Speaking, then, of the
left side of the pressure node the following observations

may be drawn for the fundamental standing mode from

1. This is true for the fundamental frequency only,
not for the higher harmonics.



Figure 15:

The observations

1.
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The perturbation in the burning rate

is generally in phase with the pressure
and higher for higher steady state rates.
At sufficiently low ‘1%~13 s however, the
function becomes negative - out of phase
with the pressure.

Once again the burning rate perturbation
closely follows the flame movement,
Again, as the vaporization rate increases
the shear stress decreases.

The vaporization rate perturbation takes
both positive and negative values, being
in phase with the pressure for high Y°oolj

or possibly for sufficiently low Y%w.

relevant to Figure 16 are

Quantities are linear in z; and %, a
result which apparantly can be deduced
from the differential equations and boundary
conditions.

G
Weakly dependent upon T, Mg

$¢9
in phase with the pressure for sufficiently

Ime is
"

high ; and;again follows the trend of %? L .
§ (o)
The vaporization rate perturbation is in

phase with the pressure for sufficiently

high % and 2.
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4. The shear stress shows the opposite
trends as the vaporization rate.

Now effects in phase with the pressure are known
to O[2Q-] or first order in frequency. The integration
of the low frequency series will not be carried any
further. It remains to investigate the asymptotic beheavior
of high frequency. It is hoped that this informetion to-
gether with information over the full frequency range for
the stagnation point will aid in givihg full frequency

information for the flat plate.

C. The Flat Plate - High Frequency

It was pointed out in ChapterIl that when the
frequency becomes sufficiently high a phenomenon known
as the high frequency boundary layer, a region of rapid
transition just as the regular steady state boundary
layer, cames into play. For note from Eq's. (3.42), when
§f = o© the dominant terms of the differential
equation do not contain the highest derivatives and a
formal series development in powers of 1/2¢ could not
satisfy all boundary conditions. The physics of what
is happening has been explained on p. 38. In order to
recover thé highest derivative it should be clear from
Eq's. (3.42) that differentiation by &4 twice must raise
the order of a quantity by 2§ . Therefore, the scale in

-which the rapid transitions must take place in the
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vicinity of boundaries is ‘[{;{, just as with the plane and
spherically symmetric models. The high frequency limit is
taken under the constraint that wave propagation normal to the
boundary layer is not important. This is an effect of O[‘%";_]
which is the ratio of a normal wave propagation time to a cycle
time. This effect is not included as a result of the expansion
procedure used in Eq's. (3.14) with the result of Eq. (3.15d).

Therefore, define the high frequency variables to be

Ny
A= € '® » =2 (4.17a)
8, = 'v"z;’z B, = g(?— A (4.17b)

Eq's. (4.17a) are the outer variables holding for the majority
of the field in which diffusion is not sufficiently fast to keep
up with time rates of storage of mass, momentum, and energy.
Eq's. (4.17b) are the inner variables holding near the surface
and flame boundaries where rapid transitions in a distance of

0 [aA] must take place. In these two sets of variables Eq's.,
(3.42) become

P, + SMLF'P, - F“Pl=(G+sM)T +

K4 [ L33

* PP+ F'P-TENF"] 4 « [P F'- BF"

(4.18a)
(14 SMF') 07 = SMPT /- SMO—IT + | [g— +Fo;
+PT - remTY + % [o;F -T'R ] (4.18b)
(14 SMF' ) Y= SMP Y] + o '
I Wt ['1"”?+ F"?Kq+PYK
” (4.18¢)
c ey ]+ % L Yr F- Yo By )
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P - P (1+8MF) = - ' -
BBs 8 Vs [SMF‘ P +(i+dM)T Fi;‘]

-+ 2 / 3
S [Epps +]F '+ é’iﬁ [YJMF'"—-PF'"

F'BFas + 977 F'F ' p FY
P s ﬂd)]+2ﬁd

(4.19a)
Vg - (143nF')0= -SMPT s ST - o
1EE B
% [PTri-vsmT"- F'Bo, +8T" ﬂ]
o( '
Bl LF -T P“_] (4.19b)
' - _ '
‘ﬂ'n‘,p - (1+SMF )‘d’K- SMPY - %pvnp
a
-2 (?YK'—Q’JMYK"-F"py;rp-l-pY,:ﬁ,]
(4.19c)

s
- 2% / -~ v
2 [F %d Y B ]
where Eq's. (4.19) are valid for ﬂ_—ﬁ; or B =8,

On each side of the flame the existence of a

uniformly valid composite expansion of the form
P = H(-e)q) +R,(d, s, + Rz(«) ,@1)
o= Sl 2z) + U, (,8) + U, (=, £2)

) (4.20)
U= Vi S W (5, 8) + Wy (o, )

~ is assumed. The solutions with ;% y are valid near the
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the surface, those with gaznear the flame and thpse with
aﬁa do not exist on the oxidizer side of the
flame.

If Eq's. (4.19 ) are to be important oniy near
the flame and surface, that is within a distance of order
42 = 1 of these boundaries, F(%) = F(%_F) should

2

possess an expansion

2 n
F=_2 aw (26) (4.21)

n=o

near the wall and

0
F = Za{,h(dﬁ,_)" | (4..22)

nse
near the flame. The first terms in o&{ of these expansions

are F(0) and T , respectively; these are known numbers.

f

Therefore, viewing the homogeneous parts of Eq's.(4.19) it
should be clear that solutiors can be picked which have

exponential decay fromn the boundaries in the variable -

They can therefore match no power of o{ of another
solution which is()E?«qJ away from the boundary of
interest. Therefore, with these inner solutions, what
happens atrthe flame can have influence on that at the
wall for no power of ¢\ . This greatly simplifies the
boundary conditions. A further expansion which is assumed
is

H= 2 "n“‘”,(’Z)

neo

5 an 0 7)

n=o
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R = Z: a" r"(p)
o

W= Z A" u (B)
5 (n)

‘VJK== ;Ej°<” < (‘3)
ns o

(4,22)
Then from Eq's. (4.3), (4,20), and (4.22) the boundary

conditionsat the wall become

No Slip ,
(o)
n=o0 F' (o) 2O
TN (m /
n20 Ao + ¥ ") <
¢ (4.23a)
Temperature
h2o
(n) (m)
4 (0) + U, 0) = 0O
A (0 (4,23b)
Mass Fraction
nzaoe
( ) n)
w (4,23¢)

Wall Heat Transfer

le‘(il
e (©) +P'(o)=o

(OI

WEZ = "Z‘;M [ﬂ. o) + 1, (o)]
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/
(! ) ¥ &M R(o) (o)
‘d (o) +‘r-1—lk . T cm————— — -" ‘°)
o F ()= o Bd,[‘ﬁ"‘m + 5 0)
+25Mm( 4 o) + r‘;{"tc»))
n2\
{
(n (n+2)
4"0) +97 ug ( "’ jzsn[ﬂ o) +\r~,= "te) ]
ao

+(n+|)[ﬂ. (o) + e, (o)]-g (4.23d)

Wall Mass Transfer

(o)
b o)+ r,._.‘ (o) =

o (o}
w,_.:(o)'ﬁ'.' = (l—YFw)ZSM[A;"(N + r“'c (o) ]

(o) ! ! | (0)
Ve (0) +9VZ We (o) = ¥dM(1-Ye ) - F(0)[v, (o)

+ w0 ¥ -y, ];ﬂ o) + %)

+28M[4 50 + r‘F“}o:] ¢

ny
I {
vF( '0) +17 wFf,"“()o) = -F(o) [vé")w) *We. Io)]
+ (l—y'_.w) }’(nu\[li.'(o) + r;,‘f"zo)]

(n+2)
+ 28M [J‘F (o) + f‘Ff (z’)]g (4.23e)
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Expanding in the same way at the flame Eq's. (4.2)

become

Mass Fraction

. VALL (m) (M (n) _
}[ F "'\VF ]*cv Wy J=0 (4,24a)

Temperature

(n) (n)
4 - ( ‘ (»)
o TIF 44, “Fb ?EV Ve, J (4.2u4b)

Mass Transfer

(o) . to)’
+w, =o
o

W F.

/
(4)
n2o, jCv W*’V_W(M').]'f[v -rf' 7120 (4.2u0)

Heat Source /
o) ! (q’ (o)

no, 4:'0 m‘_,‘,-[ lnm ¢nm] 3_[;,“) -ﬁw""]u 24d)

Continuity

r;;;.) “_ l"o?)”
el = &‘3’”
OURRs
'\ZAO(M —A(”) (n)
j,"" N 'y"r‘"*" j,(")l o7 ry (nn)'

l.
(4, 24e)
" (”’” (ntz)”
«A:’+2 tmz) J—,

“.
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At infinity Eq's. (4.4) become

Jnm('.o = > L")z 0 .
o ) =) n2i o ¢ (4.25a)
N\
(o) (n) '
4, (e0) 2 ~$M(r-) nd) o) =0 (4.25b)
V" (ee) =0 (4.25¢)

e

- “ R

where the errors made are OEe, ] in all the boundary
conditions if, indeed, the inner solutions demonstrate
exponential decay to all orders in &

Eq's. (4,18), (4,19), and (4.22) become

[ 1}
(H—SM)AM‘ SMFE400. G+dm)T (4.26a)

' nwplh)_.
(1+SM).AC SMF 4 °© (4.26b)

Y] " "
(13 $M) A7 _ Smr /M= L[4 4 4 ptty ""F?g 260)
2
(e am) HEE GMFILN o § LU g n-" g un-a )
-l.(n-?.["‘(n-a)":l ~EN4-n ] (4.26d)
8

(e SM 4 = gm BT/ - M) T (4.272)

(“,;M),‘m a &M “‘(ii-rl.

(4.27b)
f
(14 M) (2 = -g_[.‘“'” PSRN O M IOL T réMT'"J
+ SMAT! (4.27¢)
n2s3
(148M) g0 .mj,(n)1-1_,__%[4(,,_,,::‘_‘:4‘"_%4 sl |
(4.27d)

1 -2 -
td(n-2)[Flatn-a_tl4m-2]

(14 SM) vl SM 4 Yy (4.28a)
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{
(l+SM)V.\-m= SMJ-MYK (4.28b)

(14 §M) v, = SMAM Y +L[ve +Fv"’+A(°’Y erdMy]

(4,28¢c)
h23 I n ) '
(1+ ¢™m) v (”)-a SMAHCY,, +Jz-jv|€"‘”+ Fv,é""' ...,[,“"UYK‘J
*(M)[F‘v“"v- F'LL("-:',] (4.28(1)
2 n
4 (M7 (n)
a"(‘* c"w\-"] “{ 28" !]rpc" =0 (4.29a)
7{4Eup(.h)) = (%‘; )“ém =0 (4.29Db)
1 8
o'i.,f“’p(."’]= o (4.29¢)
) 3 } (w)
X Er‘ - J@P SME” = (4.30a)
4 -
d’[u"o”] =0 (4.30Db)
As[we =0 (4.30c)
d
3.315[(5:'"-]:‘3 (4.31a)
(ﬂ)
Uq
X:E J=o (4.31b)
. o{‘[w"c(:m] =0 (4.31c)

In Eq's. (4.29)-(4.31) only the leading order differential
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equations in ok , where n is the order of the first
non-zero solution, have been given. The higher orders will
only add inhomogeneous parts. In addition to the
nomenclature list it will be pointed out here that the

first subseript refers to which éide of the flame is

under consideration and the second subscript refers to either
the wall (i) or flame (o) or the flame (1) on the
oxidizer side. The method of separation of terms in

Eq's. (4.26)-(4.31) has been possible due to the

linearity of the problem; quantities due to time rates

of storage have been incorporated into the H s S , and VK
equations. This system under the boundary conditions, Eq's.
(4.23)-(4.25), can now be easily recursively solved.

The procedure is as follows:

1. Eq's. (4.26) may all be solved by one
integration yielding one constant of
integration each time ) A_ﬂ, (n) , which
can, however, undergo a jumgggcross the flame .

2. Eq's. (4.27) and (u4.28) directly determine

(nt )

de o and VF,O in terms of A“"F(:)) .
?

2
3. Eqg's. (4.29)-(4.31) can all be solved, each
equation yielding two contants of integration.

One constant is taken as zero to provide

exponential decay into the region of interest.
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Doing this S
M H-SMF'
J‘(O) = A,“(o) =4

7 i "JQ
S Flanx S
T et -3M JeéMF
+(14§M) e O IHEMF S T 4y
o
F'd2
‘4(01 M (H'&MF’
Agn €
etec.
(4.32)
Therefore -J“'; 4"'), v« , VU): etc. are determined.
Consider Eq's. (4.29)
re = Ars” e Rak
¢ <
U-Ff” = Auf® e -8,
¢ Fe
WF‘ - Aw (OJ e ﬂ'
(4.33)

Now consider the wall problem. Eq's. (4.23a) say A,-F"W:-. O.
[ 9

Therefore, Eq's. (4.23d) say A"'(o) = O . Since (‘Ff”, o’
<
the same differential equation in Eq's. (4.29) must hold

for r;f” . This will always happen if the leading

¢
order solution is zero. Applying Eq. (4.23b) to Eq's.
(4.29b) and (u4.27a)

Augr = SMId-1) T

Now apply the no slip condition, Eq's. (4.23a). Since

Arr e i
F" ]

ArF(-.' = - I+ éM! (o
¢ Y E
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Then apply the heat transfer condition, Eq. (4.23d), in

which the only unknown is A“‘c., , and

Ape = £ [Bulr-y-1-sm]

Then from Eq. (4.33) apply the mass transfer condition,
Eq's. (4.23c), to obtain

AWP?' = —JM(‘-YFW) B.o (("‘)?‘
Then from Eq's. (4.23c) and (4.28a) 1#;"“’ is
determined as

(o)
= (o)
‘td'FW AWFC

The recursive procedure is then as follows:
1. Eq's. (4.23a) determine A,FQWN),

(Y
2. Eq's. (4.23b) determine AJ‘(n+q-

3. Eq's. (4.23d) determine A tna,
Fe
4, Eq's. (4,23e) determine Aw,"“

00
Fw

The wall problem is therefore completely solved without

5. Eq's. (4.23¢c) determine

reference to the flame and all A-‘ué"’ are determined.
From Eq. (4.3d) the wall mass vaporization rate perturbation

has the expansion

o0
M, VX = -[(|+2‘")P+otﬁ<]w=zvz'; Jo" M
-4
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and
(-v)
Mw L _24M ¢y WZ SMB.2(r-1)
e | e L °'H‘F @] F(o)

(4.34)
a result which should obviously be compared with Eq's. ( 2,7)

and ( 2.8 ) for the plane and spherically symmetric models,
The vaporization rate goes to infinity as 4“::;\ with
a component in phase with the pressure and is purely a
pressure effect.

Now consider the problem at infinity. Eq's.
(4.26)~-(4.28) automatically satisfy Eq's. (4.25). In
fact that is what partly dictated the form of the
separation of the differential equations. Then only the
flame problem remains. The procedure for solution is as
folows:

1. All J!;n) are known but the constants of

integration on the oxidizer side, A"'o“”
are unknown.

n)

2. .40""’ and vat are known in terms of

Antm,

3. Eq's. (4.30) and (4.31) can all be solved,
alwa;s picking the solution with exponential
decay into the region of interest.

Then Eq's. (4.24e) say that

(o) ) (o)
t"Fo = r',.o =;rz,i = fa"’--o
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and that Jrco) and -—Am are continous across the
flame. Then Eq's. (4.27a and b), (4.28a and b) under

Eq's. (4,24a-d) say that

(o) ) (o) (7 (o ) o) o)
WFO = w?o = w°|'. =W°, :LLO‘,' .'.-uo‘,' =u,',° sqra =0

This is already striking and is analogous to a result
obtained in Appendix C for the spherical model. The

field under high frequencies of oscillation responds
naturally to this oscillation at the flame. Boundary
conditions are natural to this oscillation so that

strong gradients do not appear at the flame, Therefore,

it will be expected that the mass burning rate perturbation
will remain bounded in the limit of infinite frequency.

Continuing, from Eq's. (4.30a) and (4.31z)

r‘(” = (2
o l\'?g €

S 2 -8, Y1+ sMF]

with analogous solutions to the remaining equations in
/

Eq's. (4.30) and ®.31). Since from Eq's. (4.26Db) 4

is continous, Eq's. (u4.24e) say

Ap (2) = = Ar-o,(n
Fo 13
Then again Eq's. (4.24e) say

(o) o) 1
S 4 (14 $MFg ) At

Eq. (4.26a) then yields

Arf = 2e-%o gr (1+8M)
¢ 4 (14smMF.)?
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Then the fourth of Eq's. (4.24e) gives a jump condition
on /\%(a) . This exact procedure is then repeated

starting with r;"’

A and r}ﬁ” and the entire solution
Y

to the stream function is generated. The constants
of integration in Eq's. (4.30b and c¢) and (4.31b and c)
are obtained in the following manner from Eq's. (4.27),
(4.28), and (4.24):
1. Eq's. (4.24a and c) are two equatiéns in
the two unknowns AVF;M and Awof_"),
2. Eq's. (4.24b and d) are the two equations
for A“r?' and A“o((n) .
Carrying this out part way
AWO?) c —i AWF:” = éMj'(Cp F;" )18.
from which the burning rate at the flame can be carried
out to 0 [x] . Expanding Eq. (4.13) in the present

variables,
()

Wzx Meg = V5 Zx“ Mg,

The outlined procedure yields

Me
£ _ _ , — 2
= éﬂ[a’ T+ ™, %ol + O[at _]]
(4.35)
As ol=»o0 the physical origin of the terms can be

traced through the equations. The Y factor comes from
a compression of the boundary layer increasing gradients
and transport properties. -T; comes from a convective

"sweeping" term carrying the steady state fuel flow into



- 122 -

the flame and by moving the flame position.

'Ti appears because the convective sweeping is increased
when the pressure gradient acts on a fluid of lower
density at the flame.l Note that Eq. (4.35) is finite

as ol» o0 and is purely a pressure effect to OL_A:\.

It approaches the infinite frequency limit from a side

which has a component in phase with the pressure, although

at o/ =0 since T_i))’ usually, it is generally 180°
out of phase with the pressure.

Because of the algebraic complexity of the high
frequency expansion, it has not been carried further.
It will be returned to, however, after completion of the

stagnation point analysis. Many of the results are similar.

D. The Stagnation Point
Eq's. (3.60) are to be solved under the wall

boundary conditions, obtained from Eq's. (3.16),

Plar=o

T (o)=0

’7,,(0) = e,

{

Ye ) = L (1-Yie [P ¥ VIMF(0) ] =1 e (o)
! b S - F

O (o) = ‘38 [ P(O) ¥dMm (0]]

(4.36)

1, This is a consequence of Eq's. (4.26a) and (h4.28a),.
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the flame conditions, Eq's. (4.2), with Eq. (4.2e) replaced
by the statement

" _
P P, P"  continuous

and the conditions at infinity, Eq's. (4.4). Once again

it is desirable to split the problem into a velocity effect

and a pressure effect by assuming

P=P

(o)

‘7'"-; 1’”“"” éM ld"'u)
g =0

+ &M Ff.)

o) T SM O, (4.37)

Using Eq's. (4.37) in Eq's. (3.60) the problems are

separated. Using the linear operators

45 Y P & '
E -— F é; Y ”_ Y ¢ d
< PR AR TN L {2t3T Gy,

'_'t N
the equatlons become

(0)] =73 [T(3*‘”) +
5<SEQZ)J==° Ca T’

3 " (0)

d{_;[ ?xm]:- - % Fo Yr:‘

\w
E
| —

(4,.38)

& LRy 1= YFY - 3T )= 30 - 90 Tiw(iw 1)
3

o, Lo, ]=-4 ‘,)T‘*-%cw(f-l)'\"-rf‘r”

PAU, IR AVANEN
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Eq's., (4.36) become

/
Pro) = 0
O (el =0
£ = Yew,,,
/ ' .
35:'“,(0) = % (r- pr) P(o,(o) - % ?T:w(o)k (o)

()= -4 ,,00)
O_"”(o) 53- o)

Bes (4.40)

, -
P(u (o) =0

0'(';)(0)=0

ld’,,m(o)-‘-‘ vo“)
/ _ i . -
Y (o) = 4() j{;,)\ijco)»rP(.,(o)] g%)y"'«u.m

I .
O = - 55, [¥Flo) + R, ()]

The flame conditions remain unchanged in form and Eq's.

(4.4) become

{
Fo, (=1
O'("")(oo) =0
o0) =0
%’w& (4.42)
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Pu)' (e0) = J @

<lo

?hkéaﬂ:S ©

Eq's. (u4,.38), (4.40), and (4.46) comprise the velocity

(4.43)

problem which has the integral

O = a%c kako,

_specifying lfr-',,m’-' O . Once again va/)" is the
.actual variable of interest and é, does not have to
be independently specified.

Previously mentioned numerical integration
techniques have been applied to these two problems. The
pressure problem requires a sixfold iteration in the real
and imaginary parts of Wo) , F’Qc), and aﬁqv.

Only a four-fold iteration is required for the velocity
problem because of the mass fraction integral. To check
the numerical procedure, however, a high frequency analysis

has also been performed for the stagnation point. Here the

appropriate high frequency variables are

a(f.“-—' ﬂsq = 2 = - 2.
Viw A o ‘?Z(Zf (4.44)

Here a(aﬁ.ci(x) , however. The same expansion techniques
as in Eq's. (4.20)-(4,.22) are used. The methodology
follows much the same pattern as for the flat plate; some
differences must, however, appear because the stagnation

; point feels different free stream gradients than the flat

plate.
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Since the procedures are so similar only the primary
results will be presented here, The analysis is located
in Appendix E. Note that the high frequency analysis is
carried out without making the formal split into a
pressure and velocity problem.

The perturbation in surface mass fraction

becomes
Yr, = ~dM-Ye,) (1) BT + O[] (4.485)

which is finite and should be compared to the result
on p. 118 for the flat plate. Analogous to Eq. (4.34)

there is obtained

Mw
Mw _ _sMmG) T By
P >reor o+ OO0

(4.u46)
and the same conclusions are drawn as were for the flat

plate. The burning rate perturbation becomes

+ O[«3] (4.47)
which is identical in form with Eq. (4.35). Except for
numerical factors the behavior of the flat plate and the
stagnation point is the same at high frequency. This is
because the wave scattering produces a travelling wave
in the same direction as the free stream tfavelling wave

for the flat plate. Only the numerical effect is changed.
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It is therefore suspected that a knowledge of the
stagnation point behavior over the full frequency
range will give good qualitative information for
the flat plate over the full frequency range. Indeed,
it may even be true over the entire leading edge of
the body.
Figures 17-22 contain the results for the
pressure effect over a wide frequency range. Consider
first Figures 17a and b as representative of typical
curves. The following observations are apparent:
1. The quasi-steady response (W=0) for
PP(O) and MFf/me is generally substantially
lower than for the flat plate, c.f. Figure
12.1 However, due to interaction with the
convective field this response is greater
than for the plane model,c.f. Figure 2.

2. The real part of the mass burning rate
perturbation is a monotonically increasing
function of frequency. For 20 T, >b’
the curve will always cross ;E; zero line
and move out of phase with the pressure
in the mid-frequency range, remaining
so far any further frequency increase.
As with the flat plate, the low frequency
limit has the burning rate in phase with

the pressure,

1. Again, note the significance of P from Eq. (3.55).
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The shape of the Pr(O) curve is quite
different from that of the plane model,
c.f. Figure 2, It is therefore clear

that the inclusion of convection and

flame movement radically changes the
unsteady behavior over the simplified

plane model in the mid-frequency range.
However, the high frequency limits

must be qualitatively the same since the
physics are the same. The flame cannot
influence the wall and a compression
process is controlling, not convection.

The skin friction components ( F}y(o) and
P "¢o) in the figures) are monotonic
functions of frequency with extremely strong
response in the high frequency range. This
is, of course, due to a second derivative
being taken across the high frequency
boundary layer. It should be noted that
the skin friction is essentially imaginary,
out of phase with the pressure, during a
large portion of the'frequency range.

The surface mass fraction perturbations

are exfremely low once again justifying

the neglect of surface temperature -
perturbations. From now on this will be

considered an uninteresting quantity
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“and it will not be plotted.

6. -As noted before, the flame movement
strongly influences the burning rate
perturbation as is evidenced by similar

shapes of the curves.l '

7. Since the shear stress and vaporization
rate curves are not similar in shape it
is clear that the unsteady state modifies
previous conceptions concerning the effect
of blowing on the shear stress.

A further observation which deserves special

mention is that real quantities behave quasi-steadily

far out in frequency. Imaginary quantities are nearly

linear in frequencyxall the way out to w~1. Such

behavior is generall§ not to be expected since as

soon as uﬁ is not negligible compared to } , curvature

effects are to be expected. For the plane model unsteady

effects become prominent very low in frequency. This

strange behavior for the boundary layer has strong implications

concerning the practical.application of the theory. Recall
that on p. 7 it was shown that w was essentially the

ratio of a diffusion time to a cycle time. More precisely,

the actual nominal boundary layer thickness, while
oL &/ r—T=] , is ,
S*~ 3-5 o*lyRe ' ]

1. Note that "flame movement" must also be interpreted
as containing & compression component. See Eq. (4.1).
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such that

*
w?h tdt"f
9-25

w ~
Therefore, for w?® ¢y Ofl:]’ w~ 1/10. w‘fd,}’f was
the frequency considered in the plane model. It is
clear that because of the mathematics of the convective
layer the frequency naturally under consideration is
less than the previous intuitive interpretation.
Moreover, since significant response does not occur
until w~ 1, it is clear that quite short.cycle times
compared to diffusion times are implied for significant
unsteady response.

Figures 18-22 show the effect of parameter
changes for magnitudes of changes which are practically
possible in usual systems. If the change produced
negligible shift of the curves from the base curve
of Figure 17 it was omitted. The following conclusions
can be drawn

1. The effect of YF is as it was for the
w

flat plate. Strong effects take place
at the surface, but only mild effects
at the flame. The directions of changes
in the quasi-steady limit are the same
for both cases.

2. Y"’“/?‘ produces the strongest effect of

any parameter change. This may have been
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guessed because of the influence it has

on Tf which strongly influences the high
'frequency limit. The most important effects
appear to be the shifting of the zero point

of Pr(O) and MFf/mPf to a higher frequency

and the production of a minimum point in

the burning rate for sufficiently high Ygq_4 /J.
The quasi-steady iimits show different
behavior between the stagnation point and

flat plate. The burning rate responds similar1§
for ch;nges in Yo oo /] but the shear stress
and vaporization rate behéve differently

in the two cases.

3, The effects of @& are only felt for the
vaporization rate and shear stress for
sufficiently high frequency. This is
expected since it strongly affects the wall
behavior in the high frequency limit. Also,
as expected, 7 has little effect at fhe
flame and in the quasi-steady limit.

4, %_ has the same type of effect as Yo /]
since it roughly affects the same thing,
the flame temperature. However, in the
quasi-steady limit the behavior with this
parameter is the same as for the flat plate.

5. )’ changes make reasonably strong changes
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in the vaporization rate behavior as is
expected from the high frequency behavior '
The burning rate is not significantly
affected for the parameters chosen here;
however, for sufficiently low Tf it must
affect the high frequency behavior in a
strong manner. In this respect the flat
plate will be more strongly influenced

than the stagnation point.

Now turn to the velocity effect. The numerical

results are presented in Figures 23-29. Considering

Figures 23a and b as representative the following observations

are apparent:

1.

Again, as with the pressure effect, the real
parts of all quantities (parts in phase with
the velocity) remain at essentially the
quasi-steady values all the way to w of 0 fil
The high frequency behavior has essentially
been reached when e« ~~ 20. The imaginary
parts are nearly linear in w outkggifér
as w N~ 1. a

The qﬁasi-steady perturbations are merely

due to a perturbation in the Reynolds number
through the free stream velocity perturbation.
Thus MF&“’”/ r?F+ — 1/, , etc. (See Eq's.
(4.14) for the flat plate).

Changes in the shear stress are extremely

small until the high frequency effects set
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in,

4. Again notice the strong influence of %?; on
qu‘/F;F# .

5. The imaginary part of the burning rate pertur-
bation is negative for this case over the
full frequency range. Therefore, for a
standing wave in the sense discussed on p. 105
for the flat plate it is out of phase with
the pressure by 180°, The same is true for
the vaporization rate perturbation. Note,
however, from the flat plate results that
for sufficiently high Yo, /3 » high q
or low ¢ this result may reverse itself.

It should be remembered at this point that the
velocity effect can be extremely strong because of the
raising in order of magnitude of 1/M compared to the
pressure effect. Therefore, if a velocity effect goes
in phase with the pressure an important augmentation of
the pressure effect will occur. A caution at this point
is to note that if '72;.- s Pl(o), and P(0) were normalized
by the steady state quantities all the curves would
collapse to a single curve in the quasi-steady limit.
Viewing Figure 24-27, the following conclusions can be

drawn:
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The effect of \Q" is somewhat similar

to what would have been predicted by flat ’
plate results. P, (0) increases, FE%O)
decreases, and M;+ /r?;.-& is little
changed with an increase in Vg, . The
normalized curves of F:.(o) and Pr.“(o)
would show little change just as with the
burning rate perturbation.

As expected from the flat plate 'Yh‘,é produces
strong effects. First, an increase generally
shifts the usual behavior to a higher

frequency. A peak develops in MF{- [= p+\‘.

M;‘ /QF’ )‘. goes positive in the low
frequency range. £ (0) moves toward the
negative side but develops a stronger peak
on the positive side. Normalized by the
steady state value, however, P”(O) shows
no radical change.

The effect of % is not as strong as
might have been believed from the flat
plate results. The main effect of an
increase in qT is to shift the curves to
a higher frequency. In the low frequency
range, however, the same general trends as

for the flat plate are observed.
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v, ¢+ has almost no effect except at high
frequency for P"(o) . An increase in
just shifts the curves to a slightly higher
frequency. N\

Since the effects of Yo'ola' and %, were SO
important for the flat plate in determining where the
imaginary parts of the burning and vaporization rates went
in phase with the pressure it is desirable to see more
closely where this happehs for the stagnation point. Figures
28 and 29 contain these results. They are plotted for w =1
and because of observation l; on p. 129 they should
closely correspond to the first order in frequency flat
plate results of Figures 15 and 16. Here, however, the
dependences are much milder, It can be seen that for
sufficiently high Yg‘.l", and 4 MF‘_ IFF‘lC can
be driven in phase with the pressure for an appropriately
constructed standing wave.r It is known, however, from
the asymptotic behavior of this quantity that it must
change sign at a rather low frequency if it is positive
for a while. Observe that - FQ(D) cannot practically
be made to go negative. Therefore, this is a result

contrary to those for the flat plate.

E. TFeedback in Combustion Systems
It should be apparent by now to the reader that
prime emphasis in the results has been given to components

of the burning and vaporization rates which can be in
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phase with the pressure for either a travelling or standing
wave. The reason for this has been previously indicated;
these components determine, in many practical combustion
systems, whether or not a periodic wave can even exist
in the system, It is now well established mostly from
theoretical work concerning rocket combustors (29, 30, 31)
that energy or mass release perturbations per unit volume
under the action of an acoustic wave must be in phase
with the pressufe and of sufficient magnitude to overcome
certain damping and sustain such a periodic wave. This
is saying that these perturbations must increase the
rates per unit mass of gas locally in the chamber,
Damping is usually provided mainly by convection of the mean
flow out the chamber and by boundary conditions such
as a delaval nozzle.

It should be clear that this is an intrinsic
feedback problem between the main combustion gases and
the mass-energy sources (droplets in the present work),
although other factors may enter such as interaction with
the injection system. However, what has been studied
here is a forced oscillation, not feedback, of the
" droplet bﬁrning process, and confusion can arise. The
reason for this is found in many types of perturbation
problems. If flow velocities inside the combustor are
sufficiently small so that Mach numbers are small, the

wave equation applies to the chamber gases under small
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perturbations. There is no damping here if M=0 and periodic
solutions cén be found which are neither damped nor
amplified in'time (the acoustic modes). Such solutions
are correct up to terms of O f'M] compared to O [ l'] .
Now since the droplet burning process is what is creating
the terms of O r M] (The mass-energy source to create
the mean flow), it will also contribute terms of this
order under perturbation unless an extreme resonance takes
place. Thus, a wave of 0 [ l] containing terms of OEMJ
acts upon the burning process of 0 [' MJ to create a feed-
back in the term of 0['Dﬂ of the wave. Therefore, the
rburning process appears forced by a wave of O[';] and
the real feedback takes place in 0 [ M] But this is
where the damping occurs so that it is clear that an
intrinsic feedback system is under consideration. This
argument is, of course, rough but has all been put on
rigorous theoretical ground and is common in oscillation
theory with feedback occuring through a small parameter.
It is not yet established whether vaporization
rate or burning rate perturbations or both are the most
important quantities concerning this feedback to the
wave. Arguments caﬁ be given concerning the importance
of both. As such both will be concentrated upon. The
important questions are 1,) in what frequency ranges

does a strong amplification of these perturbation rates
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take place and 2.) what is the magnitude of this
amplification?

Consider then by way of practical application
a simple standing wave in a chamber as constructed on
p. 105. Now, however, assume that many harmonics of
the fundamental can exist. In particular it is also
possible by a Fourier expansion to consider a "standing"
shock wave pattern as studied by Sirignano (32) in
relation to rocket instability. Each harmonic then
has the form

L F
~s . - ¢l - 5
WX 4w (nwMmk)e [— 2n

' T
ﬁd M(”MMX)Q"V‘“ n=1213 .-

where wM is the fundamental frequency ( wM =TT +0[mM] )
and X is the chamber variable measured longitudinally
from one boundary. Consider the droplets to be located

at an X such that - (nTX) and coo(nNTTX)

have the same sign, i.e., always on the left hand side

of the first pressure node for the harmonic under
consideration. It should be clear that all quantities

of interest,Ng{’}m’? , P(o) , etc. take on the same

form as the velocity for a velocity effect and the same

form as the pressure for pressure effect;lthe proportionality

sign is replaced by an equal sign if the Fourier coefficient

1. That is, they are proportional to the right hand sides
of the proportionality relations above, respectively.
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of the wave type and the appropriate magnitude of

the result under consideration are multiplied to the

right hand side. In addition the pressure effect

must be multiplied by M if the same non-dimensionalization

scheme is used as used previously. By way of example

consider spherical droplets with CL* = 500/4

X . .
and LL.° = 50 ft/sec. Then the characteristic
diffusion time is a*/u: = 3.29 x 10"5. sec,-l.

This corresponds to a Reynolds number of 67 if ‘;ﬂ;' = 10”3

poise and 5%: = ,05 lb/fts. For a sound speed of 3500

ft/sec the Mach number is .011+.2
The wave dynamic problem is, howéver, usually

solved with respect to a different non-dimensionalization

scheme. Velocities are refered to the speed of sound

and pressures by the ambient pressure. To put this

treatment in this scheme the velocity perturbation

becomes divided by M and the pressure by 1/ M. Now

the pressure effect appears as O[:l] and the velocity

effect as 0 [ 1/M] . Then if nm ¥ is 0 C M]

or gfeater the velocity effect is as strong or stronger

than the pressure effect. This point should be strongly

emphasized: even though the droplets may be near a

velocity node the effect may be extremely strong since

l. This is of the order of the characteristic times of
some high frequency oscillations in liquid propellant
rocket chambers.

2. This is a relative velocity Mach number. Actual flow
Mach numbers are generally substantially larger in actual
combustors.,.
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velocity is raised by an order of magnitude in 1/M
in the unsteady state.

Note then that for the wave construction only
the real parts for the pressure effects are in phase
with the pressure for the fundamental and any harmonic.
However, the real parts for the velocity effect, while
90° out of phase with the pressure for the fundamental,
have components in phase for the higher harmonics and are
directly in phase for [ = ©© |, Simultaneously, the
imaginary parts move from in phase with the pressure
to 90° out as a) goes from 1 to o0,

Discussion of the results in relation to this wave

construction are deferred until Chapter V.

F. Summary

Perturbing about the steady state solutions
developed in Chapter III, periodic solutions have been
obtained to the stagnation point and flat plate approximations
to the droplet burning problem. The stagnation point
problem yielded solutions over the entire frequency
spectrum while the flat plate lent itself only to low and
high frequency analysis. Certain correspondences in the
two cases have been pointed out. Attention has been
drawn to the vaporization and burning rate perturbations
as being of prime importance to the problem of combustion

feedback to an acoustic wave,
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CHAPTER V

REVIEW AND CONCLUSIONS

It has been recognized that the process of
droplet burning and vaporization in an actual combustor
is, of necessity, an unsteady process. Adding to this
the practical interest in oscillatory burning, it is
clear that unsteady analysis has been long overdue.

Since the complete unsteady problem presents presently
insurmountable mathematical difficulties the various

types of unsteadiness have been separately aneclysed.

This separation, of necessity, zlso introduces errors, but
errors which can be estimated. At least conditions can

be stated where this separation is possible. It has
therefore been possible to state certain criteria whereby
droplets burn in a near steady state and when it is
possible to consider periodic solutions of small amplitude
taking place about this near steady state.

To obtain this steady state one criterion is
that the liquid is not changing temperature in time;
the statement must be that the heat-up time is a small
fraction of the lifetime. TFor sufficiently low wet
bulb temperatures compared to the ambient gas temperature,

sufficiently small ratio of liquid specific heat to gas
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specific heat and sufficiently small vaporization rates
this is true. Another criterion has been found to be
the fact that initial conditions of the gas phase
shquld relax to the near steady state conditions in a time
short compared with the droplet lifetime. For a strong
convective stream, small vaporization rate, large
liquid to gas density ratio and sufficiently well behaved
initial conditions this criteria is met. So that
unsteadiness is not felt due to a contracting droplet
radius and so that in the investigation of a periodic
solution the droplet surface moves negligibly far during
a cycle it is necessary that both the diffusion time and
cycle time be much shorter than the lifetime. For
a moderate enough convective stream, large liquid to
gas density ratio and small transfer number this criterion
is usually satisfied with the cycle times of the order
of the diffusion time. The errors made are of the order
of these time ratios when the steady state model is
assumed valid. The periodic solution is asyﬁptotically
valid up to the order of these ratios.

Periodic solutions for what was called a "pressure
effect" were obtained for some simple models of the
vaporization process under somewhat artifical boundary

_conditions. These artifical conditions had to be introduced
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precisely because of the model simplicity; convective
effects were not properly taken into account. It was
seen that for frequencies commensurate with the diffusion
time extremely strong response in the vaporization rate
could be expected. In the limit of very high frequency
it was found that the vaporization rate perturbation could
become infinite as the square root of frequency but that
the burning rate perturbations would remain bounded.
With the aid of the simple plane model it was possible
to investigate the effects of periodic liquid heat=up
and finite evaporation kinetiecs. It was found that
for many practical configurations these effects can
be ignored.

In order to treat the convective effect properly
the asymptotic limit of a high free stream Reynolds
number flow over a liquid body was considered. What
resulted was the investigation of the binary fluid
boundary layer for the stagnation point and flat plate
at low free stream Mach numbers. The condition for the
existence of a flame at the stagnation point were
investigated. It was found that only for sufficiently
low Reynolds numbers, large droplet sizes, high temperatures,
and fast reaction kinetics could the pressure be low enough
from a practical poinf of view and still retain the collapsed

flame zone assumption. It was found from the steady state
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theory that even with the collaped flame, a significant
fraction of the vaporized mass is convected into the
droplet wake rather than burned in the boundary layer.

It is perhaps best here to show that the
theoretical results are plausible when compared with
experimental correlations. Take the case Y}wv = .9,
T = 0.2, and pure vaporization so that \Q%o/j = 0.
From Eq's. (1.25b and c) and the convective correlation,
Eq. (1.27), the average vaporization rate per unit
area is for high Re

e 6.3 b l1+B) Re'/® = 0.c1 Re'?
Putting the stagnation point results in the same non-dimensional
form ( m= -%;f&i )} there results from Eq. 3.62 and

o0

Table 3

m= 0.97 Re''2
which is, as expected, higher than the average over the body.
Apparently, therefore, the flat plate and stagnation point
results can be empirically matched to obtain the correct
total vaporization rate at high Reynolds numbers.

A periodic solution was then obtained to the
linearly perturbed problem by introducing a longitudinally
travelling isentropic sound wave of arbitrarily small
amplitude in the free stream. This type of wave was

chosen for analytic simplicity; however, because of the

1. Re on this page is based on droplet diameter,
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linearity any wave type may be built by superposition
of these. 1In fact, in any practical device such as longi-’
tudinal wave must invariably be a standing wave in order
to satisfy the combustor boundary conditions. It was
found possible to solve the problem for arbitrary free stream
Mach number by splitting the problem into two parts; one
was primarily to compression of the film and was called
a pressure effect analogous to what was studied for the
simpler models and the second was called a Qelocity
effect, primarily due to the changing convective field.
However, it should bé cautioned that this is in reality
a mathematical artifice and the distinction is somewhat
artifical; it happens solely because this is a compressible
fluid with the waves propagating at a finite speed through
the ambient gas (thé characteristics on an x - t diagram
have a finite slope).

Striking similarities were found between the
flat plate and the stagnation point results for both
high and low frequency. It can therefore be conjectured,
and there is no theoretical justification for this, that
the qualitative behavior of the flat plate can be
constructed from a knowledge of the low and high frequency
results for the fléte pléte. and the entire spectrum for
the stagnation point. Figure 30 represents this conjecture.

The low frequency end of the velocity effect is constructed
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from the quasi-steady and first order in frequency results
using the stagnation point observation that real quantitieé
retain the quasi-steady results and imaginary quantities
are nearly linear out to «w of O[:l] The high
frequency results use the asymptotic high frequency results
for the flat plate. The mid-frequency range should, of
course, only be interpreted as a rough guess based on
the two endpoints and the stagnation point behavior. The
pressure response is constructed in a similar manner; only
real quantities are presented.

Then consider a droplet as acting partly as
a flat plate and partly as a stagnation point. Consider
first the pressure effect for the fundamental mode so
that the droplets are considered very close to a velocity
node. With increasing frequency (shortening the chamber
length) the vaporization rate component in phase with
the pressure will slowly decrease and finally move 180°
out of phase with the pressure at w~21 a strong
negative peak will then develop as the frequency is
further increased. Only at very high frequencies will
the response become positive again. The point of the
first sign change can be strongly and practically control-
led by a change in YOald: . The magnitude of the quasi-
steady results should be between .25 and 1.25 when normal-
ized by the steady state vaporization rate; these are

generally the magnitudes of the stagnation point and

1. Possibly the flat pls :e shift does not occur until wW~h.
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flat plate, respectively.l The same behavior is noted for
the real part of the mass burning rate perturbation with
one important exception: for normal values of —t§ and ¥
the burning rate will never return to being in phase with
the pressure once a sufficiently high frequency level is
reached. The point of the sign change is mostistrongly
influenced by Y&ﬂ/‘ and ?f . Also, for sufficiently
high Yo_oli and presumably for %. a small peak will
develop in the response ét low frequency in phase with the
pressure. The magnitude of this response is usually
approximately 1.

Continuing, the velocity effect is added. It
should be clear that shortening the chamber length must
bring in this effect if the droplet location is fixed,
Therefore, at high enough frequencies in practical con-
figurations this effect must enter. TFor the fundamental
mode for sufficiently high Y°~‘3 or q. it is seen that
there can develop a rather strong peak for the burning
rate in phase with the pressure at a rather low frequency.?
The magnitude and frequency point of the maximum must
depend strongly upon how much a droplet acts as a stag-
nation point and how much as a flat plate. It must also
be primarily strongly dependent upon Yﬁpli . It is
therefore clear that combining both the pressure and
velocity effects can produce a reasonably strong peak
at low frequencies in phase with the pressure fof the

burning rate. It is easily conceivable that the

1. This may easily be computed from Figures 7, 9, 12, and 20,
2. Recall that a velocity effect is much stronger than a
pressure effect.
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magnitude of this combined response can become much greater
than one relative to the pressure effect alone., This type
of response requires that droplets are sufficiently farv
from a velocity node. The velocity effect of the
vaporization rate perturbation is opposite for the flat
plate and stagnation point and little change from the
pressure effect alone should be expected, at least for the
fundamental. Recall, however, that construgtion of Fﬂ&&o)
may be strongly in error for the flat plate past w

of 0 [1] and the strong positive peaking for the stagnation
point may be dominant, causing a strong augmentation of

the negative pressure effect peak.

Considering the higher harmonics, recall that real
parts of the velocity effect can be in phase with the
pressure. These are extremely strong at the low frequency
end (the quasi-steady results). Both the vaporization rat
and burning rate are augmented in phase with the pressure
except at very high frequencies for the vaporization rate.
Opposite effects come into play with respect to frequency;l
1.) raising the harmonic increases the component in phase
with pressure but decreases the response magnitude and
2.) increasing the frequency for a given harmonic decreases
the response but would also move the droplet position with
respect to the wave position so as to increase the response.

If then, consideration is given to the problem of
increaseing a chamber length where initially, say, w«~ §

the following sequence can be expected for

1. Here the droplet position is held constant with
respect to the acoustic chamber,
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the burning rate components in phase with the pressure for
sufficiently high \@./i and % -

1. There is a positive response for the
fundamental, out of phase with the
pressure. Consider only those harmoﬁzcs
which still allow the droplets to be on
the left hand side of the first pressure
node so that <4m wwW X  has the same
sign as ¢ nNTX . Then the combined
pressure and velocity effects favor the
lower harmonics; the higher the harmonics
the less chance it has of being in phase
with the pressure. It is possible, how-
ever, that the first few have a positive
response.

2, As the frequency decreases the fundamental
response will go in phase with the pressure.
The normalized response can easily reach
O 11 1.1 The fundamental will undergo a
maximum response and then settle to the
quasi-steady pressure response. More

harmonics will be brought into play.

1. This is the known magnitude of response necessary to
overcome chamber damping in a liquid propellant
rocket engine. See References 29 and 30.
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3. The components for each harmonic brought
into play will become stronger in phase
with pressure. This response can easily
be much greater than 0 (1], approaching
0 L 1/M]. The second harmonic will undergo
a maximum response due to the effective
movement of droplets toward a velocity node.
4, The successively higher harmonics will go
through approximately the same history as
the second but with increased reliance on
the real part of Mr{ IF“"‘ and the
movement towards a velocity node as
determining factors since the velocity
effect is most important for the higher
harmonics.
Concerning the vaporization rate, substantially the same
behavior will occur for the higher harmonics as for the
burning rate., If, however, the stagnation point behavior
is sufficiently strong the fundamental will depend primarily
on the pressure effect alone and no strong maximum can be
expected. Here comment is restricted to w 2Z §. The
reason that higher frequencies are now excluded is that they
do not exist in practice for drop sizes of interest (75-500,; )
in high performance combustors.
In summary for the above, it has been seen that
the burning rate perturbation can undergo striking changes
with frequency for the assumed wéve type if one assumes a

droplet acts partly as a flat plate and partly as a stag-
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nation point. The most important parameters in determining
this behavior are % and Y%blé. The velocity effect is of
paramount importance to this behavior. Conclusions concern-
ing other wave types, quantities of interest, liquid body
configurations, or frequency levels can easily be drawn
from the conclusions of Chapter IV. The primary type of
response which stimulated this entire work was, however, that
immediately investigated above.

Definite conclusions concerning actual combustor
performance have been avoided as much as possible. There
are several reasons for this and they are linked to areas
in which further research should take place. First, in an
actual combustor the droplets are not at a fixed location
but are moving at a speed of the same order as the gas speed,
usually. Secondly, the free stream relative to the droplets
is not a constant one nor is the mean flow constant with
respect to the chamber since gas is continually being evolved;
the relative speed effect has been discussed already and
generally been found to be unimportant as long as a high
Reynolds number flow exists throughout most of the droplet
lifetime , but the changing mean flow effect has not been
treated. Also, the effect of other boundary condition
gradients has not been treated.

Thirdly, actual average steady state ambient
boundary conditions are not known with any precision and,

in many cases, not even roughly. Under this effect can
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also be included the fact that the relative direction of
the mean flow over the droplet can easily change once ’
during its lifetime if at the injection point the injection
speed is higher than the gas speed. Fourth, in many cases
it is not possible to justify the existence of a collapsed
flame or even burning in the forward stagnation region.
The fifth point, not even touched upon, is the effect
of turbulence. Sixth, the slip effect at the droplet surface
may be important. Seventh, the droplet can easily undergo
distortion oscillations of the same frequency as considered.
Eighth, research should be done on transverse perturbations
about a longitudinal mean flow since transverse oscillations
are quite important in practice. This represents a much more
difficult problem since a transverse perturbation would
essentially be a low Reynolds number cross-flow, time dependent.
Finally, and probably most important, a great deal of mass is
carried into the wake and not burned in the leading edge
boundary layer; therefore, wake flames deserve to be treated
in the unsteady state. It is worthy of note that the typical
diffusion time for such a problem would be much longer, a?
being the characteristic length rather than J*’V G’/ﬁ: .
Therefore higher dimensionless frequencies are practically
possible.

The remarkable fact is,/however, that a blind

application of the above theory is observed to explain many

of the qualitative features of longitudinal rocket engine
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instability (33) if the burning rate perturbation is
accepted as the appropriate feedback function. Work

concerning this application should continue.
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TABLE I

INITIAL CONDITION RELAXATION TIME, t;clt;if
(Initial Condition: vy o(r) = 1)
rf/rL 5 10 15 20

1.5 .0388 .0380 .0372 .0364
2.0 L1446 .1530 .1489 .1425
3.0 .6170 .605U 5964 .5860
5.0 2.3880 2.4600 2.4615 2.4260
10.0 13.1050 12,6600 12.0615 11,9340
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TABLE

2

FLAT PLATE - STEADY STATE

YFW 0 0.25 0.5 0.7 0.8 0.9 0.95
Y°o./] ” | |
0 F(0) 0 -.1267W-.27907 }-.43317|-.53010-.65385]-.73686
- |F"€0) | 4ggpp| -38008] .27901 | .18562| .1325) .07264| .03878
& s oo
E R
w.gij F"f E | =
N s e B e
_&8d (X mre o [ |
0.05 |F(0) |-.02266|-.14660F.29547 |-.44592}-.5404)-.66086|-,741L8
F"(0) .45327] .36648 .26861 | .17837] .1271d4 .06956] .03707
Y £ 0 2.32012[3.04840 {3.67120f{4.107374.81791(5.52374
e -.02266] .87591f1.17224 {1.30117/1.348041.38671{1.40329
Fle 0 .83333 .90909 | .93333| .9u11g .94737| .95
F"f__ 45327 .23164 ,1u966 | .11721] .10584 .096u6| .092u2
MFe | .02266| .06949 .08231| .08791] .08999 .09164| .092u2
0.15 |F(0) |-.06326|-+18250-.32511 |-.46889[-.55897-.673u4} .78975,
Fu(0) | .42410] .34219 .25008 | .16549] ,11764 .06414]1.03408
7 £ Q 1.68182(2,45562 [3.10614|3.552814,27458]4.98725
Fr -.06362| .33894 ,59723 | .72429} .77234 .81273| .83036
Flg 0 .625 | .76923| .82353 .84211 .85714| .86364
't .uou10l .3u837 .26726 | .22388/ ,20689 .19212]| .18561
WX mp. | ,06362] ,13935 ,17372 | .19029] .19654 .20181] .20417
0.3 F(0) -.11621{-.22855-.36302 |-.49819} -.58254-.68935]|-.76017
E"(0) .38735] 371166 .22689 | .1u9u6| ,10594 ,05745} ,030ul}
)¢ 0 1,294032,06915 |2,73325/3,187643.91864}4.63782
Ff -.11621 g5eys ,2u2u7| .3u889] ,3913¢ ,u2808| 44432
iy 0 Lususy ,625 7 ,727271 .75000] .76
e .38735 37134 .32252 | .2869u] .2712) .25678] .25006
X mpe | 11g03] .20u27 .25802| 28694 .29833 .30814]| .31257
0.5 o) ~.17396/-.27303-.u0u47|-.53008] -,60819-.70653}-.77136
F"(0) .34793| .279094 .2022u | .13252] .09357 .05047| .02660
) £ 0 1.06467).79821 [2.46658] 2.925903.66446]|4.38978
Ff,, ~.17396|-.1118¢ .00717] .08705] .12099 .15115] .16u471
Ply 0 1/3 | 172 .58333| .61539 .64286| .65517
¢ w733 .35279 .33110] .30869 .2973d 28632 .28096
_ X Mg +17394. .26459 .33110 | .37043] .3866) .40085] .40739
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TABLE 3

STAGNATION POINT - STEADY STATE

q = 12 T-= 0.2
pr 0 0.25 0.5 0.7 0.8 0.9 0.95
Yo°°/] i )
0 |F(0) - .68460 [-,80730
F"(0) .24023 | .18176
¢ ce N
Fe
F'g 1 1
e ,
Tg 1 1
Beo 11.25 | 23.75
- Fe 0 0 |
0.05 |F(0) |_,0211u]-.1469d-.30434 |-.47288-,58641] ,74657] .87336
F"(0) .73703] . 768u4s| .63091| .u8us5y .39278] .27781] ,20267
Y £ 0 |1.76409}2,28211]2,700842,97878|3,408023,80750
Fe -.02114] .87371{1,153821.277021.32315]1.36320]1,38253
iuf 0 .96488|1-92357 |1 0402501, 04546 [1.04962 1,051
£ .72703] .15753] ,03713|-.00608-.02102|-.03363]-,03951
Te 2 1.36667]1.47273|1.506671,51765 |1.52632[1.53
P .03573| .28571| .78571{1.785713,03571 |6,78571 |14,2857
"Fg¢ 04227 .13237] .15628] ,16689 ,17088] ,17435]| 1760
0,15 |F(@) |-.05952|..19u81)-,36362]-.54485-,66672|-.83735|=.96100
Freoy | .70232] .90371 .77371] .60050 .u8u95| .33548] .23593
7 £ 0 |1.19v1d1.68uu3{2.074392.33014[2.72455(3.09368
Fg -.05952| ,40223 .68791| .82889 .88361| .93189| ,95515
F's o0 | .8951u4{1.06330/1.119991,13871|1.15409]1.16107
e .70234 .38586| .13782| .02307-.02048]-.05880(-.07715
Te .2 __|1.82500]2.2 2,341182.38474]2,42857| 2. 44545
Boo .05770| .20518] .5 1.089741.82692|4.03846|8.46154
MF¢ 11904} .28666| ,36023 ) ,39617 ,u1010] ,u22u0] ,u2832
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TABLE 3

STAGNATION POINT - STEADY STATE

q = 12 T- 0.2
Yr
w 0 0.25 0.5 0.7 0.8 0.9 0.95
Yo /3| ’
(- -]

0.3 |F(0) |-.10925|-.25607|-.43598}-.62852/-.75770]-.93733]-1.07528
F"(0) . 65819/1.00833| .90929) _71g17] .58082| .39708] 2723
of 0| .87205|1.31606|1.67377}1.90818|2.27029 2.61063
Fr -,10925| ,11580} ,35808] 49706} .55403] .60559] .63065
F;f ‘0 .79656/1.07960|1.19434}1.23523]1.27001]1.28589
Fle .65819| .61727] .31916] .13795] 06165 |-.009u4]-. 0428l

s 2 2.2 2.95 3.28  l3.u 3.5 3.5uY
{%- .06819| .16667) .36364| .75758[1.25 2.72727|5.68182
['Fe .21851] .u643] .58085] .65353) .68296| .70952) .7223¢
0.5 lr(o) |-.16u53-.32u67]-.51507]-.71695|-.85177 4L03827-L1797ﬂ
E"(0) .610311.075651.01980] .82079] .66629] .u5313] .30583
) f 0 .67629]1.07470}1.40332]1.61965| 1 2°" 792, 2713y

Fe -.16453{-.,079340} .10082|,22290 | .27622| .32597] .3506
F'y 0 .69523]1.06478[1,24092[1.30817}1.36714/1,39508
P 61031 .80153 .53545] .32003] .21895| ,11985] .06859
Te .2 2.46667/3.6 4,16667|4.38u62j4.571u3[/4.65517

Bos 07353 .1u706] .29412] .58824 .95588|2.05882|k4. 2647
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transfer on vaporization rate response
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point steady state
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Quasi steady pressure response
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Quasi steady pressure response
of flat plate boundary layer
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APPENDIX A: THE CHARACTERISTIC TIMES OF DROPLET HEAT-UP,
INITIAL CONDITION RELAXATION, AND UNSTEADY
VAPORIZATION

Under the assumptions listed in Chapter II an

energy balance at the droplet during the heat-up period

yields
4 ¥ o4 2% .
T:3-*|'1'|r"_ j’ e} C‘TL* b n*? X dT D)
dr?
r:r;_*

The gas temperature gradient at the droplet surface is
evaluated from a solution to Eq. (1.21d) for the temperature

distribution for no mass transfer (Laplace's equation).

This is
T = _ (A-2)

Combining Eqs. (A-1) and (A-2)

4
Al . 3RY At
' T 'Tf C T'L'*zf: cl.
Integrating,
= ¥
L |T-TF . B2 £
TL*(O)"-T.;*. C n* e ¥

For high temperature vaporization of volatile liquids the
. ¥
wet bulb temperature is quite small compared to 'T; . There-
*
fore the logarithm may be expanded and ¥ evaluated when

v . : o '
the wet bulb temperature 1s reached, T... The heat-up

wB






time is therefore

oo (200 [ | (e
HL = ) ~ +O[ T ]

3R\ T - Twe

(A-3)

Consider now the problems of surface contraction
and initial conditions relaxation. Repeating the governing

system of equations in Chapter II Egs. (2.1a)-(2.4),

] ) o~
® fr* k2 M =0

(A-4a)
4 = L 2
< Ty +vTe gre (P T")l" (A-u4db)
gTS (A-I"C)
T(f; 0) =Ty {r) (A-5)
T +l=2 5 TLow,el=1 (A-6)
A
) = mlr()] - | arn (A-7)
r St —— e—
e ri-z Beo KiBewo dt

An exact solution of the system of equations in
series form is first attempted. First, from Eq. (A-u4b),

using Eqs. (A-4a) and (A-tc),

A T em—
(rzT'" i mT)"‘ =0 (A-8)

This is immediately integrable over r'; applying Eq. (A-7),

rF2T. - AT =m_(¢) (—‘éw— T) : (A-9)



where {Y)\,_(.t) is the mass flow rate at the liquid surface
which is, of course, a function of time. It may seem
fruitful to obtain a sing;e equation in T alone by the
elimination of w from Eq's. (A-ta) and (A-9). However,
such a procedure requires the use of a more elaboraté
expansion procedure than that which may be used if the full
set of equations is retained. First note the appearance

of four fundamental parameters in qu. (A-4a), (A-5), (A-7),
and (A-9); these are IK, A ,? , and \k,, where B

may be derived from A and 7. Another useful pérameter

which may be derived is the Spalding transfer number:

B=BLl-%)= Sh

As has been previously mentioned {; &£ | 1in a great many
problems of interest. Therefore, a Taylor series expansion
of the solution in \/w is assumed valid:

T(rno= ()T

L=0
o H .
@ = 2kt ad
0
A similar expansion is assumed to hold for the other variables
of interest ﬁB, 9 , etec. Substituting the expansion into

the governing equations, the following system is obtained

for the zeroth order in \/K:

2 LO) — A t,o) LO) - Fal (.o)
r2T e — e T = m A (A-10a)



A (o)
m. =0 (A-10Db)

Sv"_°‘TCﬂ==l

- (A-10c)
T % +]=2 - (A-104d)
(o) (o) - ‘
T, t] = (A-10e)
T (ro)=T,(r
(A-10f)
) A
TO) = 1 gqe
qld) Bco "1_"0)2 & K. It— . (A-lOg)
The first order system is
P2 T ATl SNeprw_ o WA
i - (A-11a)
| A () 2 ., (o)
= -r
e St (A-11b)
o) T+ ) W o) _
T+ e T =0 (A-11c)
TY9In@®m ¢] + T (9w +] 9= o
- ) _ r ) - (A-11d)
) Lo -\-T(M(r‘“” T‘(“-——O
Ty ) ro 4 ) £ (A-11e)

Q) ;
T (no) =0 (A-11f)



(A-1llg)

An important observation is immediately apparent. The initidl
conditions, Eq. (A-5) or Eq's. (A-10f) and (A-11f), can never
be satisfied with this scheme since, as in the quasi-steady
solution,‘the time derivative of the order of the solution
being considered never appears in the equation. This could
have been seen at the outset and is analogous to problems
that arise in, say, ordinary differential equations wﬁen a
regular expansion in terms of a small parameter appearing
in front of the highest derivative is attempted. The usual
procedure in such a case is to find a scale transformation
of variable. While this procedure could have been adopted here,
no transformation yielding equations amenable to exact analysis
has been found. Now, although the idea of'an exact solution
has been abandoned, this solution should yield information
concerning one of the two types of unsteadiness which enters
the problem. Assuming that the initial congitions which will
be demanded by this solution can be provided, information
should be gained concerning the unsteady effects introduced -
by the contracting droplet radius. 1In particular, under the
imposed conditions, a correction to the quasi-steady vaporization
rate should be obtained..

_ Proceeding on this basis, Eq's. (A-10a) and (A-10Db)

are merely the quasi-steady equations. They may Dbe readily



integrated to yield

m r
(o) - - r
TY+A=e (A-12)
Beo

Using Eq%. (A-10c) and (A-10g), the familiar p? law may

be obtained;

PL‘°’2= |- 2 An(itB) + (A-13)
where <:
r‘_CO)
C= I— —r.:F_c-o)

It is now convenient to define the reference time,
t;* » to be the quasi-steady droplet lifetime. Then t = 1
when ri®-=-qo which, for a given set of numbers B, 9{/9:‘

and C, defines K for the problem because

2R 4 li+B)
d

Three convenient quantities are computed from

Eqn (A—l?):

-rr_“) = V‘%l.“) (T ‘”"’ A)

(A-1l4a)
() M@ (T9O4+A e 2 _
Tre = = X n (A-14b)
~
(@ N (o) (o)
T:- = M (T tA) (A-14c)
Zrrte 2

Then from Eqs, (A-10c), (A-11b) and (A-luc)



A-17

P
rax ) A W) A (O)
mi=m e ™M (TR iy (A-15)
r hE —_— T ar
— T“(.O)Z-
ni&)

Using Eq%. (A-15), (A-11d) and (A-1l4a), Eq. (A-lla) may

be integrated to yield

A L0) L )
m -
A r o) r\
-T-U)== m & i _e L ;;(m‘xy)
B r (o) T ——
[ r r;_“”z Beo
A (0} /f‘ t
Ao T Mol
+ " e T e :r" (TC+A) W il
> A — dr
2 nte 'z -.r(o) 2 v
nte L to) (A-16)

Succeeding order solutions may be readily carried out since
only the form of the inhomogeneous parts of Eqs. (A-1la)
and(A-11b) will change. However, §nly the first order
solution will be carried out here. The essential singularity
at r=o0 is excluded except for the final instant of
vaporization. However, the singularity at rt®=p0 will
invalidate the expansion procedure unless the droplet

vaporizes faster than at the quasi-steady rate. That is,

(1)

unless r (&) < v 'O (¢) the solution for T blows

up before the droplet actually disappears. Applying Eq. (A-1le)

A(Oj/ Le)

-—m o/

A ﬁ»w)q}') B e r;_CO) (Hs)r_}_o’ ACB e r_.p(.c)
m, = - - =

|+ (+B) 1L
o



where
r o

¥ m Ot
qu‘ J" T© - r S(Tm”\) e

e Tz o) 2
n r te)

It is now desirable to make the assumption that

ri(t)

—— = consTonT

T;(t)
This is in accord with some observations on burning drop-
lets or requires an approximately constant Reynolds number

in the case of convective vaporization. This assumption

leads to the result that

\"“) r;-(,ll
— - — [ o s o @ '___l“-'c (A"la)
rz‘.’) r(”

Finally, using Eqgs. (A-1lg), (A-13),(A-17), and (A-18)

along with the quasi-steady solution

por . 9l U+ B)
C

and the boundary condition

rlul(o):='o
the following solution for rLU) is obtained:
- 0 4. (1+B) t
T o) el ¢')
=g Eee ¥ - Y r~._f°’(t-') 4t (A-19)
L-GeB)5l? ](l-—‘t) 2 -
V;U‘J 6 ("'-t) 2




The condition for the expansion to remain regular is then
| r o
(\+8) ?;m) >\

since the integrand is always positive.

Since the above analysis gives no information
concerning the relaxation of the initial condition, this
problem must be treated separately. Consideration will
be given to a porous sphere continually wetted with
liquid at the wet bulb temperature of a surrounding high
temperature gas into which the sphere is suddenly thrust.
Thus, the initial conditions are presumed known and the
droplet radius remains constant in time (v =1) .
It is convenient to adopt

‘a' "\'13_-1-‘_*

as the independent variable. Then the energy equation,
the boundary conditions, and the initial condition become

the following

$r=-v ‘a’r + s.,lrz (r"\&r)h (A-20)
y,¥)1=0 ‘G(.q,t)=l (A-21)
-‘(r‘,o) = alr) (A-22)

where 7 has been contracted by

T=<x (A-23)
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It is desirable to convert Eq. (A-20) into a linear form
so that the powerful methods of linear mathematics may
be used. The assumption will be made that the density is
not a function of time, but remains the function of
distance as specified by the initial condition. This
will clearly abandon the state equation, but through
Eq. (A-4a) this requires that wi(r) is not a function of
time. It is still hoped that the behavior of the relax-
ation of the initial condition to the steady state
condition is not seriously affected by this simplification,
at least for initial conditions which do not radically
depart from the steady-state conditions.

Under this idealization it is possible to adapt
a method developed by Frisch (13) to obtain a useful
result. Eq. (A-20) may be written as

~= %r E\t(\’;t)]

(A-24)

where ;1; is a linear operator in » defined by

- | ""lf‘
"{r‘"' ert e ort cMir a([ .;r‘.] (A-25)

Define a steady-state solution given by

Z-LgPn] =0 (A-26)

under the boundary condition

(s) — (s) —
¥ W=o R A (A-27)
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Define a relaxation time lag as

- .

T = - °g @ Ly- g]de (A-28)
: ‘@P [ \a_cs)J

where (2, is some other linear operator, If Q2 Tw)

describes a typical relaxation time that the temperature

" takes to come to steady-state. The interest here primarily

concerns heat transfer so that from here on CZ;-S; will

be considered.

Let wint) = %th) - xd-“’u-) so that
Y = K. Cwinul (A-29)
is subject to

u(\,tl =ulrn tl=o0

(A-30)
Defining a Green's function
‘Z’;.[G(r,r'):lz - S (r-v) (A-31)
subject to
GU,r)= G (g, ,r')=0
! ) (A-32)
yields as a solution to Eqs. (A-29) and (A-30)
i
Uing)= ~ re' v !
H=- Glrrd golr 2 dr (A-33)

Substituting Eq. (A-33) into Eq. (A-28), using Eqs. (A-22)
and (A-26), and providing the order of integration may be

justifiably changed,
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I f %P[G(f‘, "')_] L \a,“'tr") - atr)] o

T = ! (A-34)
Ay /4
Thus the problem is reduced to finding a solution to
Eqs. (A-31) and (A-32). The Green's function may be
written
A/ A A ~ 2,
- - —_—r gl -
G(r- ‘,:) = € rl e (e mh--__c )(C Ir_e mlr‘_) H(f"—r)
"“‘7#“'3
A(eP- ¢7m)

(A-35)
N ( —m/r- _mx -m/r "c‘/q;)Ht—r_r,-)]

where F{ is the Heaviside unit operator. The greatest

interest 1s at y=1| so that substituting Eq. (A-35)

-

into Eq. (A-34) and evaluating at s
L3
-1 ]
Tw=73 '—*)) Ci- 7’“"")_'] ¢rili-e )3[‘1}9‘""‘“""]4?/&-36)
r=i

The steady-state solution may be obtained from the previous

problem:
- %)

\a}s):: —‘B- [e -—-\:l

so that the time lag is

(l— -—I)B P‘. ‘)
Tuj=\% 17 e'r'? Kl Ls)(r') -a)dr' (a-37)
4 (7 +B) B 3,"’1."') i

This integral blows up if 2 is extended to large values
of ¥ . However, practically r; is kept finite by
convection, burning, or space limitations. Converting this
time lag to a physical basis by Eq. (A-23),

Zze  TO)

z%5 <




APPENDIX B: THE VAPORIZATION RATE RESPONSE OF A PLANE
LIQUID SURFACE TO PRESSURE AND TEMPERATURE
OSCILLATIONS

Consider a one-dimensional vaporization model
with the liquid surface always maintained at x = 0. Assume
a boundary x =xg may be imposed where the temperature
and mass fraction of the liquid vapor are known. This may
correspond to atflame surface, the outer edge of a boundary
layer, or some type of mass absorbing, heat releasing
surface. It will further be assumed that this boundary
remains at a constant position in time. The reference

quantities on p. 8 of Chapter I are

® z2 - K
Z',.*a 55 <o’ Xs uf'*= 7; X o A
)\* j"{_ CP XF
' «
Xro= Xy S = oY
»
' = T

Retain assumptions 3 , 4 4, 9 , and 10 of pp. 12 and 13 of
Chapter I. Then allowing the average values of the
transport properties to be time varying as explained on

p. 34 the equations for the diffusion layer are

Continuity 9 + My =0 (B-1)

Mass Fraction 9\(,‘*4- mYk‘ = A N KX (B=2)
Le .



Energy ?T.; +ml, = K-T;x + Y___;' P+ (B-3)
Diffusion .LJ-‘ kaz mYK - My (B-4)
State P=sT (B-5)

In the steady-state Le W= 1 , The heat transfer in
the 1liquid must be considered, so a semi-infinite liquid
surface is treated. The energy equation for the 1liquid
is
th:-t= Tl-xx (B-6)
The boundary conditions are
Tlo,t) =T, (¥

Tlo,t) = T, (&)

KTulo,t) = MmO, L) T
= B ‘1 tx (0,%) (B-7)

)
Le prﬁajt)= rh(o,t’ [YFL(t) — \]
YFL&) - ;[To(t)] - = = equilibrium
It is assumed for simplicity that B, is constant in time,

i.e., the latent heat is not varying.d Although it must

vary if To(t) is non-steady it will only yield the same

®
l. B, 1is based to Tf .



order of variation in the results as the variation of 'T;(t)
It is the partial purpose of this section to show that Tg-
may be considered stationary in time with only a small error.
It is assumed that the liquid is at its "wet bulb"
temperature in the steady state so that the steady problem
has all heat transfer going toward vaporization, not
liquid heat-up.

Now the existence of a periodic solution to a

perturbed problem is investigated by assuming

— Lot
T =T +5wWe™
T

Y= Y + 20 e
p=1 + petvt

twt
o= T+ #6) e

ke | + xel

) (B-8)
m= Fﬁ-rf4(x)e‘“”f

- .
Le = 1+ e cwt

where the time dependent perturbation quantities are
considered to be arbitfarily small so that products and
squares of perturbation quantities may be neglected. First;
by the use of Eq's. (B-5) and (B-1) Eq. (B-3) may be

directly integrated with respect to the space variable to



yield

_ \
KT ~mT= 2‘721; + m(o)t)[ao-‘l‘ott)] + )L,a T\_x(o,t) (B-9)

By use of Eq. (B-1), m may be eliminated from Eq. (B-9)

R Tux =Tl =-pl = T - - ‘ -
- Tl-ph EF":[(I )T XT,] m(o,t)_l;([LQo T.{t“

- )\L/?'l;'Tt_x(o,t) (B-10)

Introducing Eqds. (B-8) into Eq's. (B-1), (B-2), B-5), (B-6),

and (B-10) the steady state set is obtained

——

m =0 - (B-11)
Y =Y. (B-12)
$T=) (B-13)
TF(T')?= -% AT’ (B-14)
’TL”= o : (B-15)

and the perturbation set



B-5

4

¥~

’ v
WYy - :-‘_Tu_’% = MY, - Y (B-17)

FT +3T =0
(B-18)

v/-[2m + BA ! L[ F2(T+A) _ (w] =
oA - ' - ™M ()
e [10) \-I%irv“,_to)+A(k _rie_"ﬂ

o ~ ]
TS - -x@ (v )] (B-19)

B-20)

The solution to the liquid phase problem, Eqs. (B-15) and
(B-20) is easily written
T\_ = T

cwt, X (B-21)

4
UL ==<I:(Cae:
so that if “'L(.O) =0 there is no heat transfer to the
liquid even in the time dependent case. From the equilibrium
interface condition in Eq%. (B-7) the perturbation form

may be written as

Y@= bT; (9

For normal fuels the slope of the partial pressure vs.

liquid temperature at the saturated vapor line is large



B-6
(b is of order 10). Thérefore since only reasonable
magnitudes of yF (®) are expected to be necessary to
carry out the perturbed mass flow, QL Co) should
be small. Assuming Ulo)=0 the mass fraction problem is
decoupled from the temperature pfoblem if the only interest
is in the mass flow perturbation at the surface. This

problem will be investigated first. In Eqs. (B-7) assume

: -
Tc(t) = 4 + Bt

s (t) P ¥ (B-22)
or a polytropic temperature perturbation at the outer edge
of the film. Further assume that the average gas thermal
conductivity is proportional to the && power of the outer

temperature so that

Af =& (E——-'-) (B-23)

The solution to the steady state gas phase problem,
Eqs. (B-11), (B-12),and (B-14),is
m =4 (1+8)
m X
s
EL#

?F" = ( YFL"\)QW;X

T +A

(B-24)



Under the present approximation Eq. (B-19) is rewritten

U’-]}mfmAJG'+[tﬂ1:ﬂ,Lu]p

ZA(T+A) Mg (o) -
!FA (*—-F__)+ ww["‘)”xm(“"%)]

By defining new dependent and independent variables
- 2
7= A
= A (B-26)
T+A
Eq. (B-25 is transformed to
- v I Cw e Mgla
H-F)2 2 -2 7=-4-F
(B=-27)

%%Afg; [u—nu-ﬂ-rﬂn (—P%.,)]

The -homogeneous part of Eq. (B-27) is of the hypergeometric

type and has the two linearly independent solutions

PEAACKTY B
- LTI
o0 Y’= |
7 71”F+Z_"" n=w/mA
r=

(B-28)

The particular form of Eq. (B-27) and transformation (B-26) was

chosen since |[A}{ | for most rocket propellants and the



series development, Eq. (B-28), converges in the entire ?

interval. The recurrence relations for Eq's (B-28) are

‘7 ZSF

r=0

Se= S, [oaioitea ]

C_ = ri(r-1) +in

3ce -1 -2(n
™ (re+1)? rt T ra ) S
S, =1
(B-29)
A particular solution to Eq. (B-27) is obtained by
inspection
L YV, @ L
7= n(k —%)“'7)‘1Y|)("F" )+-—-j,,( R
(B-30)

The error made in actually computing the series, Eq's. (B-29)

may be bounded by standard methods but these details will

not be presented here. The complete solution to the

temperature problem may be written

3?=: Cp 3:'+ &3 3%_'*179

(B-31)



where @ and ® are integration constants. However, 77?
contains the unknown M0}, Then the heat transfer

condition at the liquid in Eq. (B-7) is employed so that

MF(O) - )( + Betl Q—’(p)
™ ™

(B-32)

Upon application of the two temperature boundary conditions
T@=0 and TU)= -E'glv Eqs. (B-31) and (B-32) form
a system of three (complex) equations in the three (complex)

unknowns @, 8, and M (0). The above procedure fails

when A=0O in which case the appropriate transformations
are :
T=T 2
=1-X
¥ T

and a solution may be developed similar to above.

With the aid of this simple model it is now desirable
to relax the assumption that (0} = ©; if this relaxation
makes only a small difference in the results the effect
may be neglected in more complex models of the burning
process, Once this assumption is relaxed the mass fraction
Eq. (B-17) must also be considered which introduces a great
deal more complexity in computation. Again a series
‘development under appropriate transformations may be obtained
for the homogeneous part of Eq. (B-17). The particular

solution is obtained as



B-10

o= [P Gl -0 Y P W] S

where W (X)) is the Wronskian

W (X) = yp. ()dy‘:: (x!) - %Fg (x!) yﬁ/(m)
and

X =4

is assumed.

From Eq. (B-16)
A
, Y -
M= —LwoST(' 2L D)

and it is clear that the EfF equation is coupled with

Eq. (B-19). The solution to Eq. (B-17) may be written

gr= EYr, v e, Ye, oo

where € and } are undetermined constants. The particular
solution, Eq. (B-30), now contains terms in T,(0) and Ut(O)
from Eq. (B-19). (ﬁf(o) is related to WG(e) by Eq. (B-21),
E/F(o) is related to W, (0) by the equilibrium condition.

The surface mass diffusion relation in Eq. (B-7) is

rr 4 N7
Ye'@ +X Yo -F Yolo) + M0 (i- T ) =0 (B-34)



Now Egs. (B-31) and B-34) form a system of six (complex)
equations in the six (complex) unknowns (R, ® , € | F | Np(o‘)
and 9{(0) ; six equations arise becuase Eqs. (B;Sl) and (B-33)
are both evaluated at two endpoints under the endpoint
boundary conditions. During the computation only the

case A=0 has been looked at since this parameter is
usually quite small for high temperature vaporization,

One further assumption has been checked with this
model., It has been assumed above that the liquid-gas
interface is in equilibrium; therefore the kinetics of
evaporation have been ignored. If the evaporation process
cannot take place as fast as demanded by this solution,
these results are in considerable error. The evaporation
rate, is governed primarily by the difference between
the actual partial pressure of the fuel vapor above the
surface of the liquid and the equilibrium partial pressure
corresponding to the liquid surface temperature, Other
parameters than those included in the main theory must enter
since a molecular collision process is governing. This
may be avoided by merely assuming that in the steady state
there is a fixed percentage mass fraction drop between the
equilibrium surface and actual gas. In the unsteady state
a new unknown is introduced, the actual gas fuel mass
fraction and a new equation

Mg (o)

—

= %F‘L(O) equilibrium = y'FCO) actual

3



as the kinetic equation. The effect of this has been carried
out for a severe, but probable, case of 10% mass fraction

drop in the steady state.



APPENDIX C: THE BURNING RATE RESPONSE OF FUEL DROPLETS
IN AN OXIDIZING

ATMOSPHERE DURING SPHERICALLY
SYMMETRIC PRESSURE AND TEMPERATURE OSCILLATIONS -

Consider the configuration of Figure la under

assumptions 1, and 3-10 on pp. 12 and 13 of Chapter I.

Choosing the reference quantities

X,." = l“,_'

2
. ti= £y n)
‘Xl
Pt = 9;(

W = bl

= -
- -?{-,CP‘ n,

the dimensionless equations for the gas field become

- ]
m .+ %+=0O

(C-1)
gr‘zYKT + rl?\ th = (r‘z YKr)r
(C-2)
et T, 4=f%—T;ﬁ= (TL‘T})r + !Eg- r"Ft
(C-3)
=0T
P=3 (C-u)

(C-5)



Now investigate the existence of a periodic solution to

the perturbed problem by introducing

T=T() + o) e tw?

=1+ @elvt
= Tlr)+ €(r')e."w—c
(C-85)

= —\?K(") + Z«K(r) e cwt
=N Tq (re ot

+ FZFczicut

o DX w1

1]
ol

where the time dependent perturbation quantities are
arbitrarily small. Note that no perturbation in the
transport properties is being considered. Substituting
Eq. (€-6) into Eqs. (C-1) - (C-5) and neglecting

products and squares nf perturbation quantities yields the

steady state set

A I_ o
m = (C=7)
5T (e Ty
m - (C-8)
A ! Vi
—Y;YK —"(VJ'\(K)

(C-9)
el=l (C-10)

—_—f A el

r2Ye = m YK T M (C-11)



and the perturbation set
(C-12)

) . A
(- BeroteTl Ber i) v
L
I} 2 [1a) / Sy
E )‘7,_\ 2 S (C-14)
T+—U‘= ‘p
g [3 (C-15)
~ .
z l= ™ +QY —M “
r ?a'ﬂ ™ ’/x = < (C-16)

The boundary conditions for the collapsed flame

zone model with an equilibrium liquid-gas interface at

the droplet surface are
/N
™M1} + heat to droplet

2 R Fee ! A\
P T
YF (f‘\_) = YFI— (t) TLPL ) = ‘t(t)

") ‘T\-(
f;?-
(C-17)

T(r) = 'T}_ is continuous
YF(qJ=‘Y;LqQ==<D
T(=0) = T, specified

N, o) = \(aw specified



C-U

It is fortuitous that for many hydrocarbons

A=—‘B——'z~ <<\
, 03
since assuming A=0 simplifies the algebraic manipulation.
Then one parameter is lost by replacing E&. with ‘[2 .
The solution to the steady state problem yields the

following familiar equations:

Fue% Side Qxidizer Side

S (L L - -1

o F R Chot) T- Py g
— v §%($L‘$J —_ ) "(1 - |)
Yot = (el Y.=-j[- (57

General .

\*‘—\_{-—0,—“:?@'—$
}-_—lef-’(”"(\/i)
[ p—
“ 2 (14 Yom)
d
m =7 DL +) + Yo
[ e ]

3

3

(C-18)

These should be compared with Eqs. (1.25) and (1.26) bearing
in mind the difference in reference quantities. The boundary
conditions for the unsteady problem deserve some attention

since the flame (line heat source) is moving in time. It is



assumed that any quantity may be evaluated at the flame
by continuation from the steady state region. Therefore,

if F(r) is the space-dependent perturbation
. (= 4 (wT -
f(q_(t))t): f(r{‘) + %)'R_G e “" _g(f‘;)e‘wr
r
£

The derivative is taken on the side of the flame of interest
even though this derivative may be discontinuous at the
flame. This is a common procedure in perturbation

problems and its validity will not be discussed further.
Then the conditions (C-23) for the perturbation problem

become

?—Fﬁ'\.\ = 3‘& V(R)=0

*a-F‘LFJ =& Ye T RU(Te 1) Ty = © M
T2 =S tgn DT ) =T a]R
R e S (7) + LiYe P+ Vo] Ry

- = / _ — -
| 3',('7,) + RS \(F_ ()= %o(r‘{_)f-ks_ o’( t) =0

]
Q

T (%) + R T(Fr) = T(FH4) + R T ()
7 Too ¥

Yol = o (c-19)



It is assumed above that all heat transfer at the droplet
surface goes toward supplying the latent heat of
vaporization and that none changes the droplet temperature,
In the steady state this is equivalent to assuming the
attainment of an equilibrium "wet bulb" temperature for
the droplet. 1In the unsteady problem it is assumed that
this contribution is small. The validity of this
assumption is discussed in Appendix B. It is also assumed
that the oscillation is isentropic at infinity. As will
be seen this is the only consistent possibility.

~ One of the most interesting quantities is
MF(FX_) F{_Z-fzm R{_/r‘_'{.'Z ; this is the perturbation in the
mass burning rate. To obtain this function the complete
droplet problem must be solved and not just the energy
equation considered as in Appendix B. With this in mind
an exact solution of Eqs. (C-12)-(C-16) subject to
conditions (C-19) is attempted.

It is usual in diffusion problems that an
expansion in powers of the frequency is a convergent one,
although it is not practically useful for high frequencies.
Therefore, such an expansion is attempted

o
T = 2 Ww) g™

=0

o o (n)
yn = Z(ij 3N

Nn=g

o Vs "
I’:\’I = E(“"Jh M( ) (C-20)
nsp



Substituting the expansion in Eq%. (C-12)-(C-16) and

collecting like powers of the frequency
1
M‘°)= o
: 2 ) ' o) =
U-(o;' +(_'_-__ ?,JQ"’"O) —_ ™M )T-
re
Ok ) ! Aoy !
o+ (-2 )y = P Y (c-21)
r’l-
Acn?
Pert(y- LV)=0
T T
Y 2 ~ o/ (‘\4("——’ (©)
v+ (£- Boes __':I-(B:')t( + S
, . T T (c-22)
Ll)‘+(?___§- ) 0" { l‘)Y' (&)
K « - v - -
P
and for n>i
S oen 2 q (")
™M L —— =0
T
O o ' _ T g '
8 T
(m " F(3- A ) ! e T ' K‘”")
. _ - B
>/ (" = (C-23)

It will, however e shown that this procedure diverges.
’ g

An integrating factor for the W and %f“ equations, (C-21)-

(c-27), is
N
2 ™ /r
r*e



Eq's{C-21) represent the quasi-steady perturbations which
must have a solution since the steady state is stable to

a static perturbation. In fact

— A

/ / /
O rre™ ’-f consTant = ML ST ¢e\- i B

— ]
and since T o Yr?* this integral obviously converges
if taken to r=<0 , Consider, however, the solution
to the problem of first order in frequency. 6K°)blows up

3

as r as * v —» oo , The solution for O may

be formally written

la g Gy constant

&/ g — = ,

+ S-——"M/;"S [-G—(o) _(%;I) (p-] e '%/r‘l'_l

However, the integrals on the right hand side blow up as r
to the first power and also do not cancel one another. All
subsequent powers of frequency yield solutions which blow

up as r"° where n is the power of frequency considered.
The conclusion is reached that there is no solution for
arbitrary frequency if the outer boundary is cast to
infinity. The significance of this is discussed in Section B

of Chapter II.



There is one solution for this problem which can
be obtained, the case in which the frequency becomes
large. The frequency as used here is the ratio of a
diffusion time to a cycle time, and the physical significance
of a large frequency i§ the inability of the diffusional
processes to keep pacé with the oscillating field. Time
rates of storage (mass, energy, etc.) become so large that
the diffusion mechanisms cannot smooth out the field.

As such, rapid changes in physical quantities take place
'6n1y near the boundaries and these quantities tend to be
very uniform away from these boundaries. If, then, the
boundary condition at infinity is a natural condition

for the field in the absence of diffusion it will tend

to be the uniform condition established throughout the
field in the case of high freguency. Such a condition

is an isentropic oscillation "at infinity". It is now
reasonable to expect that an asymptotic solution for high
frequency will not blow up as finite power in ¢ 1if

properly treated,

For A = Viw assume
A - o0
- n f44-h)

M= %; < ™ ir) R
x ( I: - g %‘ll;

y‘_.= Glyde % T 5 s Hiwrme & + (=, )
_o (3

4o~ Li,re & T + N(,r)

P!
T

M
2’
34
Es

(C-24)



with similar assumed forms for U and H, K, L , and N .
For large ol the first two terms for yF and the first

for 55 are important only near the liquid and flame
boundaries. The terms die off exponentially and match

no power of ¢ in W or MN ., Therefore, ¥ and N
must be the solution in the majority of the field. The
exponential solutions will be picked to satisfy the
homogeneous differential equations and < and N will

be particular solutions of the full differential equations.
This is a common procedure of inner and outer expansions
and is required since W and N developed in powers of
V. will not be able to satigfy all the boundary conditions.
This is a singular perturbation problem with wild behavbr
taking place near the boundaries. The problem will not

be done in complete generality, but only a sketch will

be given to obtain the results for the leading power of
frequency. Some of the actual analytical forms will not
have to be developed. This procedure is completed in

much more detail in Chapter IV for a more complex system.

Formally expanding ¥< and N in powers of ‘/e
- A D (-2)
W= U=-Nx) T m _P_"_
4

— A (-
KW= (-F) T/ M8

4
A, O 2) i
WD (-FI)F 2 M, TS5 o f
< (1-Ye)T A = + T Eﬂ T T ™ — .]
r G- ) [es T BT Y

0 _ _ (VY Ly A G2



and so0 on recursively,
Now

&‘\-ﬁ - ot* g (C-26)
- L J (‘«p—?)di"

and since ¥ has a similar expansion to éf"’ it may be

shown that
A (-2) 2 33
mo= "X‘S Lh-E)F e (C-27)
T . 4 o]
"
. & O (-2) 3
assuming M_ is O[«] or less. ™ blows up as r> as

v o0 . This behavior is sufficiently suppressed so V\(vgr)-*o
as r—>o0o0 for all orders in o{ . Thus, the outer

boundary condition on %ﬁ, is satisfied. Construction of

the full solution near the surface and flame boundaries

is now attempted.

Consider first the droplet surface. Expanding %fF')
[

(n})

(n) n)
The mass transfer condition yields

/ H(r { Eal ~\
() — -) ny= =2 - - > M
H q) - xR = e

It is concluded that the only term which can balance o H(f)/z"

~
is < M, so that
ril

(o) = (-1) 2
H = 3 M7 /g
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where the assumed expansion for FRL is

—~l

Fq\‘-': Z: " IC\(-M

i

)
But K “°tr)=0 so that

-
%Fm: LN VAR (Cc-28)

[ 8

Consideration of the energy equation would show that

B~ () e e

These conditions hold in the limit of w - s0 and the
following conclusions may be drawn:

l. The surface mass flow perturbation goes to
infinity as the square root of frequency and is larger
for larger steady state mass flows.

2. The surface mass fraction perturbation remains
finite thereby justifying partially the neglect of surface
temperature perturbation.,

It may be shown that a consistent procedure

yields G“'= = . Using the flame conditions in Eq. (C-19),

jLe'(3)+e 6@+ k'] + i) NG = L(F) = o

| .
7 - 1
L) + M) = —.’?# Re =4 (65 +rtzy] (c-30)
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Therefore, from Eq. (C-25)

= - (C-31)

Evaluating the perturbation form of Eq. (C-5) at the

flame
(%)= v—; (%) +R;?I’¢ﬁ")
or
M_(F)= G'(F) + L BB + K'(F) + m ('ﬁ
e * ; AR A EIL"
so that using Eq. (C-30)

) —
Me ()= G"’(r)+r<‘°’c4)+ (ﬁ ) RV g
%5 %
Using Eq. (C-30) to evaluate Gf"cE;),

( L

M= e o)+ L [ A(__)(c 32)

- % ;]4-

and the full mass burning rate perturbation

;

®

Mo @)= M." 5224 R
F
5

(C-33)

This solution depends upon the solution of the energy
equation to determine i( ( ); however, for the purposes
here it is not necessary to do so. Regardless of the

magnitude of F; (usually g~ 10y for non-convective



. w
droplet burning) and regardless of K (?) Eq. (C-33)
. . A (~3) . -3
must be at least of order unity since Tﬂ(q)ls C)[r}
This shows that while the vaporization rate perturbation
goes to infinity the burning rate remains finite of order
unity, as the frequency tends to infinity and either is

in or 180° out of phase with the pressure. This seeming

paradox actually presents no problem since the total

perturbation in mass released during any portion of a
cycle is zero as frequency tends to infinity. 1In
diffusion processes one cannot speak of rates at two
different boundaries being equal since rates of storage

in the interior would then be neglected.
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APPENDIX D: WAVE SCATTERING FROM A SPHERE AT THE FORWARD
STAGNATION POINT ‘

In the inviscid field the equation for the pertur-

bation velocity potential ¢ e,"‘"t defined by

b\/‘=V¢e.‘"'”t

is~.

V29 +(wM) g=o oot

A boundary condition is that far from the body the velocity

must be that of a plane wave given by Eg. (3.22)

¢Z {0) = o fw $MX

Since the normal velocity at the body must be zero, Neumann

conditions hold.

¢n (body) = O
A sphere will be assumed for the body so that the boundary

conditions become

¢x (=0, 6) = e (MY r(emlo )]

¢.(1,8) =0

where r is the radial variable in spherical coordinates, X

(D-2)

is measured from the sphere center, and axial symmetry is

1. Morse, P. M., and Feshbach, H., Methods of Theoretical
Physics, Vol. I, McGraw Hill, New York, 1953, p. 1lb63.




assumed. It is assumed )M 1 such that a series

expansion

' = n 4 {n
— 0 n
=27 ((wim)" 9
n=o0 .
is attempted. Then Eq's. (D-1) and (D-2) become to first

order in (Wwd™M
v*e =0
vi¢g =0 (D-3)
¢(o) (°°,v91=|
$'0,6)= 0

¢i’( (c0,8) = X = r o (e+121_")

W
o, G,8) =0 iy
It may be immediately verified that
o)
T .-
@ = wolo+I)(r+ 3ea) (D-5)
and
Q) i
= - r —-
] y + [3m2l9+'“') ‘1 (D-6)

are solutions of Eq's. (D-3) and (D-u4).

The velocity at the surface is then given by

,e)= §-2 .., (6+F) - twiM £ ce(o+) 2 (84T )
.

+0 mwén)"_]g etuwl



Then expanding for 60‘*‘“’/2_ in the direction of increasing
e the boundary condition for the edge of the boundary

layer in inner variables is

t
(D-7)

L‘L(S)"o) = gs [\"r ‘c% iw&l"\]etw
It should furthermore be clear that the first
term of Eq. (D-7),representing the quasi-steady state, is
also the solution for the steady state inviscid flow in
the vicinity of the stagnation point. This is obvious
since the zeroth order equations of Eq's. (D-3) and (D-u4)

are equations holding for the steady state velocity

potential for M2 €< 1,



APPENDIX E: STAGNATION POINT HIGH FREQUENCY ANALYSIS

The equations

PY + 4 FP -4 F'P 4+ 4 FIP -2 iy Pl g dME™

- ] = (E-1la)
?[T (‘3+cu.’ +%U' +%SM‘\'(Y-f)
) t L lwsmT(Y ]
o/ +4Eq -;,_._.,cr:—% W’+§Jm;w(r-:)r (E-1b)
+IrfMmv”
"
g 55 - % v Yo =T EPYe rYEMY (E-1c)

are to be solved for high W subject to the boundary

conditions
Surface
Plto) = T(o) =0
?F—'(‘" = %ew
afF,co) = 2(1- Y, )L Po) +¥EMF(or] - 3—‘#& F(o)
T'o) =-£ [ Plo)+ réMFce)] (E-2)
38,
Flame

éf#F(1§)"yb(7;)=0
4 }7‘5;(’7}) + y—,,’(ipzo
T (5 - Vol %) +7-7~F () =0

F (%) - O g e ) =0 (E-3)



Infinity
P’ (o) =)
O (o) = - S$M(r—y)
fe=l=o0
€ -u4)
Defining the high frequency parameter and variables
¥z Yo s = ;2( B = _’)_;_7_,«  eos

and assuming the existence of a uniformly valid composite

expansion of the form

P=H(2) + R(B) + R.(8,)
o= SK@) + W (g) + u;(ﬁz)

7“: VK(?) + Wk|(?.) ¥ W‘K.,_( F2)

(E -6)
Eq's. (E-1) become
/
— - qa 20 4,0 .
H .T = -:.o(fH +%FH”"%‘F‘Hi+t‘_§HF”—6’$l‘1F"'
(E-7a)

+ qzi?[s +Zdnle-)J+ 287 + 12 ST (L, +1)

+ M- :z 2z h i . ' n
Sremlem)T ,,Nf$+:;.;rs YERT = rgmT ¢

3 (E-7b)

P - ' _ .
V=2 oe‘fv" YIFVIHL MY —-a—.rMYK'(
(E-7c)

X

1
2l
x\

{

= -2 xXFR" +4 iy 3.,
3 3Q$R+%¥R%'§&um-8a)
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W % W =42 [Fu +» RT )
2 i1 L (E-8b)

\WALRE. | =-4 . i ,
gW=-tx[Fw +R Y ] 5 -to)

Eq's. (E-8) are valid for eitherfsl or,éb and represent
differential equations for the qdantitieé important
near boundaries. From their form it can be seen that
solutions with exponential decay away from boundaries
can be picked. Therefore, R, cannot influence Rl to
any finite power of ol if 3& is QL] .

Assuming the frequency expansion
)

R= 2« rimg)

Na Qz
w = Zdn U.("”(ﬂ)
=0
\NK==égEf" Wi (@)

H=_«xn 4("'(3/
n=. g
S

Z "
dﬂ 4 ")
Nnzo (%)
L= -4
V“= éf(ﬂ Vh(n)(o,)
Eq's. (E-7) and (E-8) become
a2y
4 = Rasmr
I
_4\60 = 0

o o gyt !

A - T[|+'—_§éwg+%p‘( 2 g ppont 4Ry Ly e “-u]
)

tA = 3;:"(4‘(-1)

It

E-9)

(! 0¥ 0,1 oy ‘
A %[A ) \‘%F‘hw) -,_‘é/_,,‘J,(ol +§ F%(”] 4_33‘(0)’ g FEME"
n=23

! iv b
_z‘(n)= 2 !4‘{”-1) o — ph-vn o (o)l Fig C0»
3 3 $FH ] (E-10a)

4 3 4 n-2)
t 3y



A&:-Jh(k—l)T’ +3TIAL(-1)

QM= 3L

) _ 9 ) - !

<M= 2 fge R TIE  Ldy P O B

n>3 .

() = G (n-2)" /
~ ‘:lf'd +§FO“’-2) +§A(n-z)'7—’f

(E-10Db)
e) _ o pl-2) ! -
V;‘. = 3% ME VK(')= 3.4¢ )\fn;l
V2 = ’ “ (o) /___ "
«M= 2FLLO N —wimy
nzs3
" it
(E-10c)
Y"(m)”I.—-H ("'J, =0
7" € -11a)
(ma ¥ v (m)
g4 =° (E-11Db)
i
wr‘(m) % WKLM) =0 (p-11c)

where m is the order of the first non-zero solutions.

If near the boundaries F has the expansions

F= 2 aw, (@) F=2ay (26"
n=o n=0



then higher order equations from Eq's (E-8) can be
easily developed from Eq's. (E-11). From Eq's. (E-6)

and (E-8) the boundary conditions, Eq's. (E-2)-(E-4),

become
r ‘.‘CO)
N>ej
¢ !
(n) L'\Q'l) -
4t o) v =6 (E-12a)
n) (n)
ol (0) + U (o) =
p‘ ) (E-12b)
Ve g * W e
) 7-.: (E-12¢)

- (-
-‘n" 1'(0) + "nd z'w) =0
ta)’

-4 l

! .
<% vuctioy e o
38,

Ua

[TJN F(p) +,A((o) f(‘Fi,o)‘o,j
ny

/ )
tm (nei) oo o H l tn) !

Q" (0 4 U T gy = o J,aff'. o
P 3&[ ?) oo o) (E-12d)

WF‘?"" -/ ("‘YF )[_4‘\( .)(0) + r (o)]

(ﬂ (u -
‘ \ (o) + w (o) 5‘. (1-Y Ye )[y;m Feo) +-4¢ Zo) + r‘,.m(m]
N2

VelPilo) 4 witneny!
P WF",_ o) "%(l"‘YFW) [j, (0) +',‘ (N] (E-12e)



t} Lv m“’“ﬁff’ ]\ v "“'0" J\ (E-13a)
% %
} é:“+ Wo?"so
nxo
;[V i/ F W (Mn J\ [_V on+ Weo Cvn.sj o (E-13b)
f

Edpmq- u,."“.. A u:"']‘ e cb,[v ") mjl o' (E-13c)
?
f

no 7‘"
]
[« (! +»L,(°“‘“‘.. A ,t.“" _]\7
* g Vs wlrn J\ (E-13d) -
B T
(E-13e)
7f
(')
e )= ‘°’ C)
J‘(n)(Q) + p(vu--) (% )'«4( ‘,7 )+_ r (n+.)'{l7
¥ t 7" (E-13£)
ro) - (o)
'ﬁo ('7},,— POC (’7“) P (47¥, Ul(,,'
J, (m* ) tne ) "
~ (Qf}*’?, (%) =4 (’?;) + r; t"*"( Y1 (E-13g)
(- 2) L" o' " ]
4 sMZ 4 (ocz 0 b w=zy 02 {26 (E-1ta)
T ¢¢) (o0) = - §M (¥~ N2l IWm = (E-14b)
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-
These conditions are all valid to Ofe ‘é‘_] . Consider

first the problem at the wall. Eq's. (E-10a) yield

-2 7
A= /—794"10{7'4'7 + Ay
.'AL“‘) = AJ‘(—I)

Choosing rF__f’zl= o> Eq. (E-1lla) yields
[

—-2/3 dsl

- (1)
.

Application of the no slip condition, Eq. (E-12a), yields
| At = - M
By Eq's. (E-10Db)
(o —
4 m Mty )T 4 3TL4 6
Then Eq's. (E-12b) say

Ag,c-u =0

From Eq. (E-11b)

(o)
Ue, = A 0 €
FL ugi

Application of Eq. (E-12b) yields
Auptor = SM(r-) T
¢
Then Eq's. (E-12d) yield l\jéﬂp Continuing, the procedure

- 2/ 69,

is as follows:
1. Solve all of Egq's. (E-10) in terms
of the constants of integration, [\}#nr
2. Solve the higher order counterparts
of Eq's. (E-11) choosing exponential
decay into the region.
3. Eg's. (E-12a) determine Ar‘,;‘."‘ .
4., Eq. (E-12b) determine A“FE:‘+.)'
5. Eq's. (E-12d) determine A‘&:M .

6. Egq's. (E-12e) determine F\“,(n+n
v e



Now consider the flame problem. Eq's.(E-13)
state the r solutions are zero up to and including cfl.
Eq's. (E<13f and g) determine the r's for doand Eq's. (E—lée)
determine the jump in A#n. This procedure is repeated
to determine all A“‘(u ,A,.;:t, and A"'a,:‘“) . Now Eqg's.
(E-13a and b) and (E-10c) say that the w's are zero up
to oK . Similarly the u's are zero up to k. Applyingr
these conditions and using Eq. (E-1llc),

() 8,

2/ 2
W b 3 "‘) - - =
"o Aw.-ﬁ," 4 Wo. = A“’ot"’e- 3 Ba

and

Awir = g Aues = L5 qM g ()

Similarly, the recursive procedure to determine the complete
flame problem is as follows:

1. Since all Ar::' A‘.B‘(nl, and A‘\Nare

are known all Vt");nd A‘"’are known.

2. Eq's. (E-13c and d) determine Aug:and Au°(.~1.

3. Eq's. (E-13a and b) determine Av;:’and Aw:t'nL
Solutions to Eq's (E-11) are always picked to have exponential
decay into the region of interest. Eq's. (E-1l4a) are automatically
satisfied by Eq's. (E-10).

Following thié procedure, the mass burning rate

perturbation at the flame is evaluated. Tracing through

the stagnation point transformations Eq. (3.12c) becomes
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Therefore,
M‘:(_ '
7~ S Tt~ s ey 43T,

+ O Lo*$m] + O *]

(E-15)
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